Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan.
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Adv Sci (Weinh). 2024 Nov;11(41):e2405293. doi: 10.1002/advs.202405293. Epub 2024 Sep 16.
Two-photon high-speed fluorescence calcium imaging stands as a mainstream technique in neuroscience for capturing neural activities with high spatiotemporal resolution. However, challenges arise from the inherent tradeoff between acquisition speed and image quality, grappling with a low signal-to-noise ratio (SNR) due to limited signal photon flux. Here, a contrast-enhanced video-rate volumetric system, integrating a tunable acoustic gradient (TAG) lens-based high-speed microscopy with a TAG-SPARK denoising algorithm is demonstrated. The former facilitates high-speed dense z-sampling at sub-micrometer-scale intervals, allowing the latter to exploit the spatial redundancy of z-slices for self-supervised model training. This spatial redundancy-based approach, tailored for 4D (xyzt) dataset, not only achieves >700% SNR enhancement but also retains fast-spiking functional profiles of neuronal activities. High-speed plus high-quality images are exemplified by in vivo Purkinje cells calcium observation, revealing intriguing dendritic-to-somatic signal convolution, i.e., similar dendritic signals lead to reverse somatic responses. This tailored technique allows for capturing neuronal activities with high SNR, thus advancing the fundamental comprehension of neuronal transduction pathways within 3D neuronal architecture.
双光子高速荧光钙成像技术是神经科学领域中一种主流的技术,可用于以高时空分辨率捕获神经活动。然而,由于信号光通量有限,采集速度和图像质量之间存在固有折衷,这导致信噪比(SNR)较低,这是一个挑战。在这里,我们展示了一种对比度增强的视频速率体积系统,该系统集成了基于可调声梯度(TAG)透镜的高速显微镜和 TAG-SPARK 去噪算法。前者促进了亚微米级间隔的高速密集 z 采样,后者利用 z 切片的空间冗余进行自我监督的模型训练。这种基于空间冗余的方法针对 4D(xyzt)数据集进行了定制,不仅实现了>700%的 SNR 增强,而且保留了神经元活动的快速尖峰功能特征。体内浦肯野细胞钙观察的高速加高质量图像示例揭示了有趣的树突到体部信号卷积,即类似的树突信号导致相反的体部反应。这种定制的技术允许以高 SNR 捕获神经元活动,从而深入了解三维神经元结构内的神经元转导途径。