Wang Xinzhu, Friesen Erik, Müller Iris, Lemieux Mackenzie, Dukart Ramona, Maia Isabella Bl, Kalia Suneil, Schmitt-Ulms Gerold
Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.
Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada.
Bio Protoc. 2020 May 5;10(9):e3615. doi: 10.21769/BioProtoc.3615.
CRISPR-Cas9 technology has transformed the ability to edit genomic sequences and control gene expression with unprecedented ease and scale. However, precise genomic insertions of coding sequences using this technology remain time-consuming and inefficient because they require introducing adjacent single-strand cuts through Cas9 nickase action and invoking the host-encoded homology-directed repair program through the concomitant introduction of large repair templates. Here, we present a system for the rapid study of any protein-of-interest in two neuronal cell models following its inducible expression from the human safe harbor locus. With lox-flanked foundation cassettes in the site and a tailor-made plasmid for accepting coding sequences-of-interest in place, the system allows investigators to produce their own neuronal cell models for the inducible expression of any coding sequence in less than a month. Due to the availability of preinserted enhanced green fluorescent protein (EGFP) coding sequences that can be fused to the protein-of-interest, the system facilitates functional investigations that track a protein-of-interest by live-cell microscopy as well as interactome analyses that capitalize on the availability of exquisitely efficient EGFP capture matrices.
CRISPR-Cas9技术已以前所未有的便捷性和规模改变了编辑基因组序列和控制基因表达的能力。然而,使用该技术进行编码序列的精确基因组插入仍然耗时且效率低下,因为这需要通过Cas9切口酶作用引入相邻的单链切口,并通过同时引入大型修复模板来调用宿主编码的同源定向修复程序。在此,我们展示了一个系统,可在两个神经元细胞模型中,通过从人类安全港位点诱导表达,快速研究任何感兴趣的蛋白质。利用位于该位点的lox侧翼基础盒式结构和一个特制质粒来接受感兴趣的编码序列,该系统使研究人员能够在不到一个月的时间内制备出用于诱导表达任何编码序列的自身神经元细胞模型。由于存在预先插入的可与感兴趣蛋白质融合的增强型绿色荧光蛋白(EGFP)编码序列,该系统有助于通过活细胞显微镜追踪感兴趣蛋白质的功能研究,以及利用高效EGFP捕获基质进行的相互作用组分析。