Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
Cell. 2013 Sep 12;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub 2013 Aug 29.
Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.
靶向基因组编辑技术已经实现了广泛的研究和医学应用。微生物 CRISPR-Cas 系统中的 Cas9 核酸酶通过 20 个核苷酸的引导序列靶向特定的基因组位点,该引导序列可以容忍与 DNA 靶标的某些错配,从而促进非预期的脱靶突变。在这里,我们描述了一种结合 Cas9 切口酶突变体和成对引导 RNA 的方法来引入靶向双链断裂。由于基因组中的单个切口具有很高的保真度修复,因此需要通过适当偏移的引导 RNA 同时进行切口以产生双链断裂,并扩展目标切割中特异性识别的碱基数量。我们证明,在细胞系中,使用成对切口可以将脱靶活性降低 50 至 1500 倍,并在不牺牲靶标切割效率的情况下促进小鼠受精卵中的基因敲除。这种多功能策略可实现各种需要高度特异性的基因组编辑应用。