Cabana C, Magny P, Nadeau D, Grondin G, Beaudoin A
Centre de recherche sur les mécanismes de sécrétion, Université de Sherbrooke, Québec, Canada.
Eur J Cell Biol. 1988 Feb;45(2):246-55.
The ultrastructure of the zymogen granule (ZG) membrane has been observed in vitro by rapid freezing and freeze-fracture techniques. Unidirectional shadowing of the plasmic fracture (PF) leaflet of the intact granule reveals a relatively smooth surface uniformly studded by intramembrane particles (IMP; 360 microns2) their diameters ranging from 5 to 18 nm (mean = 10.2 nm) but does not allow a clear visualization of the particles on the external fracture (EF) leaflet. Indeed, rotary shadowing reveals that the EF leaflet presents a highly textured subparticle background with a significantly lower frequency of IMP (44 microns2) showing diameters from 9 to 18 nm and a shift to larger IMP (mean = 12.3 nm). Two hitherto undescribed types of IMP are found on both leaflets of the membrane: first a population of 13-nm particles with an electron-lucent center or "pore", the most frequent type on the EF face (26%), is a second population of large IMP (15 nm) characterized by a large "pore" (5.0 nm diameter) subdivided by a delicate cross-shaped structure. In alkaline conditions, pH 8.2, ZG lysis occurs rapidly and membrane ghosts thus obtained were rapidly frozen or suspended in dextran and filtered immediately. Transmission electron microscopy (TEM) shows many opened ghosts with adhering amorphous material and numerous small vesicles near or still attached to openings in the ghosts. Freeze-fracture preparations show that granule lysis is accompanied by major alterations of membrane ultrastructure; the subparticle background on the EF leaflet is now visible only as a cap or linear crest at one pole of the ghosts. These two newly formed zones are demarcated by a row of 13-nm particles, whereas the other IMP are confined to the subparticle background. Some images suggest that the subparticle background and 13-nm IMP necklace give rise to vesicles, some of them occasionally attached to the ghosts. The subparticle background on the EF leaflet shows a complementary imprint on the PF leaflet which is similarly modified. This study shows the presence of hitherto undescribed types of IMP and also demonstrates alterations of certain domains of zymogen granule membranes that occur at the moment of lysis, associated with a redistribution of different particle populations.
已通过快速冷冻和冷冻蚀刻技术在体外观察了酶原颗粒(ZG)膜的超微结构。对完整颗粒的质膜断裂(PF)小叶进行单向投影,可观察到相对光滑的表面均匀分布着膜内颗粒(IMP;360平方微米),其直径范围为5至18纳米(平均 = 10.2纳米),但无法清晰观察到外膜断裂(EF)小叶上的颗粒。实际上,旋转投影显示EF小叶呈现出高度纹理化的亚颗粒背景,IMP频率显著较低(44平方微米),直径为9至18纳米,且向较大的IMP转变(平均 = 12.3纳米)。在膜的两个小叶上发现了两种迄今未描述的IMP类型:第一种是一群具有电子透明中心或“孔”的13纳米颗粒,这是EF面上最常见的类型(26%),第二种是大IMP群体(15纳米),其特征是有一个大“孔”(直径5.0纳米),被精细的十字形结构细分。在pH 8.2的碱性条件下,ZG迅速裂解,由此获得的膜空壳被快速冷冻或悬浮在葡聚糖中并立即过滤。透射电子显微镜(TEM)显示许多带有附着无定形物质的开放空壳,以及在空壳开口附近或仍附着在开口处的许多小泡。冷冻蚀刻制剂显示颗粒裂解伴随着膜超微结构的重大改变;EF小叶上的亚颗粒背景现在仅在空壳的一极以帽状或线性嵴的形式可见。这两个新形成的区域由一排13纳米颗粒划定界限,而其他IMP则局限于亚颗粒背景。一些图像表明亚颗粒背景和13纳米IMP项链会产生小泡,其中一些偶尔附着在空壳上。EF小叶上的亚颗粒背景在PF小叶上显示出互补印记,且PF小叶也有类似的改变。这项研究显示了迄今未描述的IMP类型的存在,还证明了酶原颗粒膜某些区域在裂解时发生的改变,这与不同颗粒群体的重新分布有关。