Departamento de Física Atómica, Molecular y Nuclear, Universitat de Valencia (UV), Burjassot, Spain.
Nuclear Medicine Department, Hospital Regional de Antofagasta, Chile.
Phys Med Biol. 2021 May 14;66(10). doi: 10.1088/1361-6560/abebfd.
To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV).MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties.A conservative Type B uncertainty for the absorbed dose ( = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties ( = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% ( = 2).In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.
为了估计当前最先进的蒙特卡罗(MC)代码中低能光子截面(<200keV)不同实现引起的吸收剂量计算中的 B 类不确定度。使用在低能领域广泛使用的三个代码进行 MC 模拟:PENELOPE-2018、EGSnrc 和 MCNP。考虑了三个与剂量学相关的量:水、空气、石墨的质量能量吸收系数及其相应的比值;吸收剂量;和光子通量谱。吸收剂量和光子通量谱在半径为 15cm 的球形水模体中进行评分。使用类似截面进行了基准模拟。当考虑不同的截面时,观察到这些量之间的差异被认为是相应的 B 类不确定度的良好估计值。吸收剂量的保守 B 类不确定度(B = 2)为 1.2%-1.7%(<50keV)、0.6%-1.2%(50-100keV)和 0.3%(100-200keV)。光子通量谱除了在 25keV 以下的能量外,没有呈现出需要考虑额外 B 类不确定度的临床相关差异,在 25keV 以下的能量下,获得了 0.5%的 B 类不确定度。在 30keV 以下,质量能量吸收系数的 B 类不确定度(B = 2)约为 1.5%(水和空气)和 2%(石墨),随着能量的增加,所有材料的不确定度都在减小,在 40-50keV 和 50-75keV 时约为 1%和 0.5%。关于它们的比值,只有在 30keV 以下的水-石墨比值情况下才观察到显著的 B 类不确定度,约为 0.7%(B = 2)。与中间(约 500keV)或高(约 1MeV)能量域相比,由于不同截面的实现引起的 B 类不确定度不能被认为是 A 类不确定度或甚至其他 B 类不确定度源(计数体积平均、制造公差等)的次要因素。因此,这里报告的值应在低能光子剂量学研究的不确定度预算中得到考虑。