Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany.
Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
BMC Ecol Evol. 2021 Mar 4;21(1):36. doi: 10.1186/s12862-021-01763-3.
Hemocyanin is the oxygen transporter of most molluscs. Since the oxygen affinity of hemocyanin is strongly temperature-dependent, this essential protein needs to be well-adapted to the environment. In Tectipleura, a very diverse group of gastropods with > 27,000 species living in all kinds of habitats, several hemocyanin genes have already been analyzed. Multiple independent duplications of this gene have been identified and may represent potential adaptations to different environments and lifestyles. The aim of this study is to further explore the evolution of these genes by analyzing their exon-intron architectures.
We have reconstructed the gene architectures of ten hemocyanin genes from four Tectipleura species: Aplysia californica, Lymnaea stagnalis, Cornu aspersum and Helix pomatia. Their hemocyanin genes each contain 53 introns, significantly more than in the hemocyanin genes of Cephalopoda (9-11), Vetigastropoda (15) and Caenogastropoda (28-33). The gene structures of Tectipleura hemocyanins are identical in terms of intron number and location, with the exception of one out of two hemocyanin genes of L. stagnalis that comprises one additional intron. We found that gene structures that differ between molluscan lineages most probably evolved more recently through independent intron gains.
The strict conservation of the large number of introns in Tectipleura hemocyanin genes over 200 million years suggests the influence of a selective pressure on this gene structure. While we could not identify conserved sequence motifs within these introns, it may be simply the great number of introns that offers increased possibilities of gene regulation relative to hemocyanin genes with less introns and thus may have facilitated habitat shifts and speciation events. This hypothesis is supported by the relatively high number of introns within the hemocyanin genes of Pomacea canaliculata that has evolved independently of the Tectipleura. Pomacea canaliculata belongs to the Caenogastropoda, the sister group of Heterobranchia (that encompass Tectipleura) which is also very diverse and comprises species living in different habitats. Our findings provide a hint to some of the molecular mechanisms that may have supported the spectacular radiation of one of Metazoa's most species rich groups.
血蓝蛋白是大多数软体动物的氧气载体。由于血蓝蛋白的氧亲和力强烈依赖于温度,这种必需蛋白需要很好地适应环境。在 Tectipleura 中,有一个非常多样化的腹足纲群体,拥有超过 27000 种生活在各种生境中的物种,已经分析了几个血蓝蛋白基因。已经鉴定出这种基因的多个独立重复,这可能代表了对不同环境和生活方式的潜在适应。本研究的目的是通过分析其外显子-内含子结构进一步探讨这些基因的进化。
我们从四个 Tectipleura 物种中重建了十个血蓝蛋白基因的基因结构:加利福尼亚海兔、圆田螺、Cornu aspersum 和 Helix pomatia。它们的血蓝蛋白基因各包含 53 个内含子,明显多于头足纲(9-11)、腹足纲(15)和前鳃亚纲(28-33)的血蓝蛋白基因。Tectipleura 血蓝蛋白基因的结构在内含子数量和位置上是相同的,除了圆田螺的两个血蓝蛋白基因中的一个包含一个额外的内含子。我们发现,在软体动物谱系之间差异最大的基因结构很可能是通过独立的内含子获得而在最近进化而来的。
2 亿多年来,Tectipleura 血蓝蛋白基因中大量内含子的严格保守表明,这种基因结构受到了选择压力的影响。虽然我们无法在这些内含子内识别保守的序列基序,但可能只是大量的内含子提供了相对于内含子较少的血蓝蛋白基因更多的基因调控可能性,从而促进了栖息地的转移和物种形成事件。这个假设得到了独立于 Tectipleura 进化的 Pomacea canaliculata 血蓝蛋白基因中相对较高数量内含子的支持。Pomacea canaliculata 属于前鳃亚纲,是 Heterobranchia(包含 Tectipleura)的姐妹群,后者也非常多样化,包含生活在不同生境中的物种。我们的研究结果为一些分子机制提供了线索,这些分子机制可能支持了后生动物中物种最丰富的群体之一的惊人辐射。