Suppr超能文献

基于 MRI 的深度学习方法用于确定胶质瘤启动子甲基化状态。

MRI-Based Deep-Learning Method for Determining Glioma Promoter Methylation Status.

机构信息

From the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.

Department of Neurological Surgery (B.M., T.R.P.), University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

AJNR Am J Neuroradiol. 2021 May;42(5):845-852. doi: 10.3174/ajnr.A7029. Epub 2021 Mar 4.

Abstract

BACKGROUND AND PURPOSE

() promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter methylation status using T2 weighted Images (T2WI) only.

MATERIALS AND METHODS

Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated promoter. A T2WI-only network (-net) was developed to determine promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.

RESULTS

The -net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].

CONCLUSIONS

We demonstrate high classification accuracy in predicting promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.

摘要

背景与目的

()启动子甲基化可改善脑胶质瘤患者的预后和治疗反应。我们开发了一种深度学习网络,仅使用 T2 加权图像(T2WI)来确定()启动子甲基化状态。

材料与方法

从癌症影像档案和癌症基因组图谱中获取了 247 例患者的脑部磁共振成像和相应的基因组信息。其中 163 例患者的()启动子呈甲基化状态。开发了一个仅基于 T2WI 的网络(-net)来确定()启动子甲基化状态和同时进行单一标签肿瘤分割。该网络使用 3D 密集-Unet 进行训练。采用三折交叉验证来推广网络的性能。计算 Dice 评分以确定肿瘤分割的准确性。

结果

-net 在 3 折交叉验证中的平均准确率为 94.73%(95.12%、93.98%和 95.12%,[标准差,0.66%]),预测()甲基化状态的灵敏度和特异性分别为 96.31%[标准差,0.04%]和 91.66%[标准差,2.06%],曲线下面积的平均值为 0.93[标准差,0.01]。全肿瘤分割的平均 Dice 评分是 0.82[标准差,0.008]。

结论

我们仅使用 T2WI 就能实现()启动子甲基化状态预测的高分类准确率。我们的网络在灵敏度、特异性和准确性方面均优于组织学和分子方法。这一结果代表了利用磁共振成像预测预后和治疗反应的一个重要里程碑。

相似文献

1
MRI-Based Deep-Learning Method for Determining Glioma Promoter Methylation Status.
AJNR Am J Neuroradiol. 2021 May;42(5):845-852. doi: 10.3174/ajnr.A7029. Epub 2021 Mar 4.
3
Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
Eur J Radiol. 2019 Dec;121:108714. doi: 10.1016/j.ejrad.2019.108714. Epub 2019 Oct 19.
4
Adaptive fine-tuning based transfer learning for the identification of MGMT promoter methylation status.
Biomed Phys Eng Express. 2024 Jul 30;10(5):055018. doi: 10.1088/2057-1976/ad6573.
6
10
Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma.
J Magn Reson Imaging. 2018 May;47(5):1380-1387. doi: 10.1002/jmri.25860. Epub 2017 Sep 19.

引用本文的文献

2
MultiCubeNet: Multitask deep learning for molecular subtyping and prognostic prediction in gliomas.
Neurooncol Adv. 2025 Apr 28;7(1):vdaf079. doi: 10.1093/noajnl/vdaf079. eCollection 2025 Jan-Dec.
5
AI-guided virtual biopsy: Automated differentiation of cerebral gliomas from other benign and malignant MRI findings using deep learning.
Neurooncol Adv. 2025 Jan 20;7(1):vdae225. doi: 10.1093/noajnl/vdae225. eCollection 2025 Jan-Dec.
7
A review of deep learning for brain tumor analysis in MRI.
NPJ Precis Oncol. 2025 Jan 3;9(1):2. doi: 10.1038/s41698-024-00789-2.
10
Machine Learning and Radiomics in Gliomas.
Adv Exp Med Biol. 2024;1462:231-243. doi: 10.1007/978-3-031-64892-2_14.

本文引用的文献

1
A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas.
Neurooncol Adv. 2020 Jul 17;2(1):vdaa066. doi: 10.1093/noajnl/vdaa066. eCollection 2020 Jan-Dec.
3
Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma.
Sci Rep. 2019 Oct 8;9(1):14435. doi: 10.1038/s41598-019-50849-y.
4
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation.
Front Comput Neurosci. 2019 Aug 13;13:56. doi: 10.3389/fncom.2019.00056. eCollection 2019.
6
Pyrosequencing Methylation Analysis.
Methods Mol Biol. 2018;1856:283-296. doi: 10.1007/978-1-4939-8751-1_17.
8
Clinically Relevant Imaging Features for Promoter Methylation in Multiple Glioblastoma Studies: A Systematic Review and Meta-Analysis.
AJNR Am J Neuroradiol. 2018 Aug;39(8):1439-1445. doi: 10.3174/ajnr.A5711. Epub 2018 Jul 12.
9
An anatomic transcriptional atlas of human glioblastoma.
Science. 2018 May 11;360(6389):660-663. doi: 10.1126/science.aaf2666.
10
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.
AJNR Am J Neuroradiol. 2018 Jul;39(7):1201-1207. doi: 10.3174/ajnr.A5667. Epub 2018 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验