Suppr超能文献

基于结构磁共振成像、表观扩散系数和磁敏感加权成像联合的影像组学预测成人弥漫性胶质瘤分级、异柠檬酸脱氢酶突变及O6-甲基鸟嘌呤-DNA甲基转移酶启动子甲基化

Radiomics for predicting grades, isocitrate dehydrogenase mutation, and oxygen 6-methylguanine-DNA methyltransferase promoter methylation of adult diffuse gliomas: combination of structural MRI, apparent diffusion coefficient, and susceptibility-weighted imaging.

作者信息

Zhu Zhengyang, Shen Jingfei, Liang Xue, Zhou Jianan, Liang Jiawei, Ni Ling, Wang Han, Ye Meiping, Chen Sixuan, Yang Huiquan, Chen Qian, Li Xin, Zhang Wen, Lu Jiaming, Ge Danni, Fu Linqing, Zhu Yajing, Zhang Xin, Sun Yu, Zhang Bing

机构信息

Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

出版信息

Quant Imaging Med Surg. 2024 Dec 5;14(12):9276-9289. doi: 10.21037/qims-24-1110. Epub 2024 Nov 29.

Abstract

BACKGROUND

There has been no research investigating susceptibility-weighted imaging (SWI) radiomics features in evaluating molecular makers in gliomas. The aim of this study was to assess the predictive value of radiomics features extracted from structural magnetic resonance imaging (MRI), apparent diffusion coefficient (ADC), and SWI in determining World Health Organization (WHO) Grade, isocitrate dehydrogenase () mutation, and oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in patients with diffuse gliomas.

METHODS

Retrospective MRI data of 539 patients from University of California San Francisco and Nanjing Drum Tower Hospital between January 2010 and December 2022 were analyzed in this study. The training, internal validation, and external test cohorts included 426 (median age 60 years, 168 female), 67 (median age 56 years, 31 female), and 46 (median age 55 years, 22 female) patients, respectively. A total of 7,896 radiomics features were extracted from structural MRI, ADC, and SWI within two regions of interest (ROIs). Feature selection was conducted using analysis of variance (ANOVA) F-test, and random forest was employed to establish predictive models. Chi-square test and Mann-Whitney test were used for assessing the statistical differences in patients' clinical characteristics. Delong test was performed to compare the areas under the curve (AUCs) of different radiomics models.

RESULTS

For WHO Grade task, the combined model of structural MRI, ADC, and SWI achieved the highest AUC of 0.951 [95% confidence interval (CI): 0.886-1.000] on the external test cohort. For IDH mutation task, the structural MRI model achieved the highest AUC of 0.917 (95% CI: 0.801-1.000) on the external test cohort. For MGMT task, the combined model of structural MRI and ADC achieved the highest AUC of 0.650 (95% CI: 0.485-0.814) on the internal validation cohort.

CONCLUSIONS

The combined structural MRI, ADC, and SWI models achieved promising performance in assessing WHO Grade and mutation status but showed no efficacy in predicting MGMT methylation status. Adding SWI and ADC features cannot provide extra information to structural MRI in predicting WHO grade and mutation.

摘要

背景

尚无研究调查 susceptibility-weighted imaging(SWI)影像组学特征在评估胶质瘤分子标志物方面的作用。本研究旨在评估从结构磁共振成像(MRI)、表观扩散系数(ADC)和 SWI 中提取的影像组学特征在确定弥漫性胶质瘤患者的世界卫生组织(WHO)分级、异柠檬酸脱氢酶(IDH)突变以及氧-6-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)启动子甲基化状态方面的预测价值。

方法

本研究分析了 2010 年 1 月至 2022 年 12 月期间来自加利福尼亚大学旧金山分校和南京鼓楼医院的 539 例患者的回顾性 MRI 数据。训练、内部验证和外部测试队列分别包括 426 例(中位年龄 60 岁,女性 168 例)、67 例(中位年龄 56 岁,女性 31 例)和 46 例(中位年龄 55 岁,女性 22 例)患者。在两个感兴趣区域(ROI)内从结构 MRI、ADC 和 SWI 中总共提取了 7896 个影像组学特征。使用方差分析(ANOVA)F 检验进行特征选择,并采用随机森林建立预测模型。采用卡方检验和 Mann-Whitney U 检验评估患者临床特征的统计学差异。进行 Delong 检验以比较不同影像组学模型的曲线下面积(AUC)。

结果

对于 WHO 分级任务,结构 MRI、ADC 和 SWI 的联合模型在外部测试队列中实现了最高 AUC,为 0.951[95%置信区间(CI):0.886 - 1.000]。对于 IDH 突变任务,结构 MRI 模型在外部测试队列中实现了最高 AUC,为 0.917(95%CI:0.801 - 1.000)。对于 MGMT 任务,结构 MRI 和 ADC 的联合模型在内部验证队列中实现了最高 AUC,为 0.650(95%CI:0.485 - 0.814)。

结论

结构 MRI、ADC 和 SWI 的联合模型在评估 WHO 分级和 IDH 突变状态方面表现出良好的性能,但在预测 MGMT 甲基化状态方面无效。在预测 WHO 分级和 IDH 突变时,添加 SWI 和 ADC 特征并不能为结构 MRI 提供额外信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e86a/11652054/ea1514a51b84/qims-14-12-9276-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验