Ren Wenhao, Tan Xin, Qu Jiangtao, Li Sesi, Li Jiantao, Liu Xin, Ringer Simon P, Cairney Julie M, Wang Kaixue, Smith Sean C, Zhao Chuan
School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University Canberra, Canberra, ACT, Australia.
Nat Commun. 2021 Mar 4;12(1):1449. doi: 10.1038/s41467-021-21750-y.
Direct experimental observations of the interface structure can provide vital insights into heterogeneous catalysis. Examples of interface design based on single atom and surface science are, however, extremely rare. Here, we report Cu-Sn single-atom surface alloys, where isolated Sn sites with high surface densities (up to 8%) are anchored on the Cu host, for efficient electrocatalytic CO reduction. The unique geometric and electronic structure of the Cu-Sn surface alloys (CuSn and CuSn) enables distinct catalytic selectivity from pure Cu and CuSn bulk alloy. The CuSn catalyst achieves a CO Faradaic efficiency of 98% at a tiny overpotential of 30 mV in an alkaline flow cell, where a high CO current density of 100 mA cm is obtained at an overpotential of 340 mV. Density functional theory simulation reveals that it is not only the elemental composition that dictates the electrocatalytic reactivity of Cu-Sn alloys; the local coordination environment of atomically dispersed, isolated Cu-Sn bonding plays the most critical role.
对界面结构的直接实验观察可为多相催化提供至关重要的见解。然而,基于单原子和表面科学的界面设计实例极为罕见。在此,我们报道了铜 - 锡单原子表面合金,其中具有高表面密度(高达8%)的孤立锡位点锚定在铜主体上,用于高效电催化CO还原。铜 - 锡表面合金(CuSn和CuSn)独特的几何和电子结构使其具有与纯铜和铜锡体相合金不同的催化选择性。在碱性流动池中,CuSn催化剂在仅30 mV的微小过电位下实现了98%的CO法拉第效率,在340 mV的过电位下可获得100 mA cm的高CO电流密度。密度泛函理论模拟表明,决定铜 - 锡合金电催化活性的不仅是元素组成;原子分散的孤立铜 - 锡键的局部配位环境起着最关键的作用。