Suppr超能文献

将铜转变为一种超越贵金属的高效且稳定的一氧化碳析出催化剂。

Turning copper into an efficient and stable CO evolution catalyst beyond noble metals.

作者信息

Xue Jing, Dong Xue, Liu Chunxiao, Li Jiawei, Dai Yizhou, Xue Weiqing, Luo Laihao, Ji Yuan, Zhang Xiao, Li Xu, Jiang Qiu, Zheng Tingting, Xiao Jianping, Xia Chuan

机构信息

School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

出版信息

Nat Commun. 2024 Jul 17;15(1):5998. doi: 10.1038/s41467-024-50436-4.

Abstract

Using renewable electricity to convert CO into CO offers a sustainable route to produce a versatile intermediate to synthesize various chemicals and fuels. For economic CO-to-CO conversion at scale, however, there exists a trade-off between selectivity and activity, necessitating the delicate design of efficient catalysts to hit the sweet spot. We demonstrate here that copper co-alloyed with isolated antimony and palladium atoms can efficiently activate and convert CO molecules into CO. This trimetallic single-atom alloy catalyst (CuSbPd) achieves an outstanding CO selectivity of 100% (±1.5%) at -402 mA cm and a high activity up to -1 A cm in a neutral electrolyte, surpassing numerous state-of-the-art noble metal catalysts. Moreover, it exhibits long-term stability over 528 h at -100 mA cm with an FE above 95%. Operando spectroscopy and theoretical simulation provide explicit evidence for the charge redistribution between Sb/Pd additions and Cu base, demonstrating that Sb and Pd single atoms synergistically shift the electronic structure of Cu for CO production and suppress hydrogen evolution. Additionally, the collaborative interactions enhance the overall stability of the catalyst. These results showcase that Sb/Pd-doped Cu can steadily carry out efficient CO electrolysis under mild conditions, challenging the monopoly of noble metals in large-scale CO-to-CO conversion.

摘要

利用可再生电力将一氧化碳转化为二氧化碳为生产一种通用中间体以合成各种化学品和燃料提供了一条可持续途径。然而,对于大规模经济的一氧化碳到二氧化碳转化,选择性和活性之间存在权衡,这就需要精心设计高效催化剂以达到最佳效果。我们在此证明,与孤立的锑和钯原子共合金化的铜可以有效地活化并将一氧化碳分子转化为二氧化碳。这种三金属单原子合金催化剂(CuSbPd)在中性电解质中于-402 mA cm²时实现了100%(±1.5%)的出色一氧化碳选择性,在-1 A cm²时具有高达-1 A cm²的高活性,超过了众多先进的贵金属催化剂。此外,在-100 mA cm²下,其在528小时内表现出长期稳定性,法拉第效率高于95%。原位光谱和理论模拟为锑/钯添加物与铜基体之间的电荷重新分布提供了明确证据,表明锑和钯单原子协同改变铜的电子结构以促进二氧化碳生成并抑制析氢。此外,协同相互作用增强了催化剂的整体稳定性。这些结果表明,锑/钯掺杂的铜可以在温和条件下稳定地进行高效二氧化碳电解,挑战了贵金属在大规模一氧化碳到二氧化碳转化中的垄断地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e69d/11252372/124e5c2538a1/41467_2024_50436_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验