Suppr超能文献

SARS-CoV-2 非药物干预措施在巴西市政数据集。

Dataset on SARS-CoV-2 non-pharmaceutical interventions in Brazilian municipalities.

机构信息

Oxford School of Global and Area Studies, University of Oxford, Oxford, UK.

Department of Zoology, University of Oxford, Oxford, UK.

出版信息

Sci Data. 2021 Mar 4;8(1):73. doi: 10.1038/s41597-021-00859-1.

Abstract

Brazil has one of the fastest-growing COVID-19 epidemics worldwide. Non-pharmaceutical interventions (NPIs) have been adopted at the municipal level with asynchronous actions taken across 5,568 municipalities and the Federal District. This paper systematises the fragmented information on NPIs reporting on a novel dataset with survey responses from 4,027 mayors, covering 72.3% of all municipalities in the country. This dataset responds to the urgency to track and share findings on fragmented policies during the COVID-19 pandemic. Quantifying NPIs can help to assess the role of interventions in reducing transmission. We offer spatial and temporal details for a range of measures aimed at implementing social distancing and the dates when these measures were relaxed by local governments.

摘要

巴西是全球 COVID-19 疫情增长最快的国家之一。市级层面已采取非药物干预措施(NPIs),但 5568 个城市和联邦区的行动并不协调。本文通过对来自 4027 位市长的调查回复的新型数据集,对 NPI 报告中的零散信息进行了系统梳理,该数据集涵盖了全国所有城市的 72.3%。在 COVID-19 大流行期间,该数据集有助于跟踪和分享有关零散政策的发现,这是当务之急。量化 NPI 可以帮助评估干预措施在降低传播方面的作用。我们提供了一系列旨在实施社会隔离措施的时空细节,以及地方政府放宽这些措施的日期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a61/7933188/c5d79d384e34/41597_2021_859_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验