Suppr超能文献

关于 COVID-19 的拓扑性质:利用网络统计数据预测和评估大流行风险。

On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics.

机构信息

Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Hong Kong, China.

Department of Social Sciences, The Education University of Hong Kong, Hong Kong, China.

出版信息

Sci Rep. 2021 Mar 4;11(1):5112. doi: 10.1038/s41598-021-84094-z.

Abstract

The spread of coronavirus disease 2019 (COVID-19) has caused more than 80 million confirmed infected cases and more than 1.8 million people died as of 31 December 2020. While it is essential to quantify risk and characterize transmission dynamics in closed populations using Susceptible-Infection-Recovered modeling, the investigation of the effect from worldwide pandemic cannot be neglected. This study proposes a network analysis to assess global pandemic risk by linking 164 countries in pandemic networks, where links between countries were specified by the level of 'co-movement' of newly confirmed COVID-19 cases. More countries showing increase in the COVID-19 cases simultaneously will signal the pandemic prevalent over the world. The network density, clustering coefficients, and assortativity in the pandemic networks provide early warning signals of the pandemic in late February 2020. We propose a preparedness pandemic risk score for prediction and a severity risk score for pandemic control. The preparedness risk score contributed by countries in Asia is between 25% and 50% most of the time after February and America contributes around 40% in July 2020. The high preparedness risk contribution implies the importance of travel restrictions between those countries. The severity risk score of America and Europe contribute around 90% in December 2020, signifying that the control of COVID-19 is still worrying in America and Europe. We can keep track of the pandemic situation in each country using an online dashboard to update the pandemic risk scores and contributions.

摘要

截至 2020 年 12 月 31 日,2019 年冠状病毒病(COVID-19)的传播已导致超过 8000 万例确诊感染病例和超过 180 万人死亡。虽然使用易感-感染-恢复建模来量化风险和描述封闭人群中的传播动态至关重要,但不能忽视对全球大流行影响的研究。本研究提出了一种网络分析方法,通过将 164 个国家连接在大流行网络中,来评估全球大流行风险,国家之间的联系由新确诊 COVID-19 病例的“共同运动”水平确定。更多国家同时出现 COVID-19 病例增加,将标志着全球大流行。大流行网络中的网络密度、聚类系数和聚集度在 2020 年 2 月下旬提供了大流行的早期预警信号。我们提出了一个用于预测的准备大流行风险评分和一个用于大流行控制的严重风险评分。亚洲国家的准备风险评分在 2 月之后的大部分时间都在 25%到 50%之间,而美洲在 2020 年 7 月贡献了约 40%。高准备风险贡献意味着这些国家之间旅行限制的重要性。2020 年 12 月,美洲和欧洲的严重风险评分贡献约为 90%,表明美洲和欧洲对 COVID-19 的控制仍然令人担忧。我们可以使用在线仪表板跟踪每个国家的大流行情况,以更新大流行风险评分和贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1944/7933279/7f429186c16f/41598_2021_84094_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验