Suppr超能文献

通过网络分析提升谷歌趋势数据的预测能力:COVID-19 的信息流行病学研究。

Enhancing the Predictive Power of Google Trends Data Through Network Analysis: Infodemiology Study of COVID-19.

机构信息

Department of Social Sciences and Policy Studies, The Education University of Hong Kong, Hong Kong, Hong Kong.

School of Nursing, Tung Wah College, Hong Kong, Hong Kong.

出版信息

JMIR Public Health Surveill. 2023 Sep 7;9:e42446. doi: 10.2196/42446.

Abstract

BACKGROUND

The COVID-19 outbreak has revealed a high demand for timely surveillance of pandemic developments. Google Trends (GT), which provides freely available search volume data, has been proven to be a reliable forecast and nowcast measure for public health issues. Previous studies have tended to use relative search volumes from GT directly to analyze associations and predict the progression of pandemic. However, GT's normalization of the search volumes data and data retrieval restrictions affect the data resolution in reflecting the actual search behaviors, thus limiting the potential for using GT data to predict disease outbreaks.

OBJECTIVE

This study aimed to introduce a merged algorithm that helps recover the resolution and accuracy of the search volume data extracted from GT over long observation periods. In addition, this study also aimed to demonstrate the extended application of merged search volumes (MSVs) in combination of network analysis, via tracking the COVID-19 pandemic risk.

METHODS

We collected relative search volumes from GT and transformed them into MSVs using our proposed merged algorithm. The MSVs of the selected coronavirus-related keywords were compiled using the rolling window method. The correlations between the MSVs were calculated to form a dynamic network. The network statistics, including network density and the global clustering coefficients between the MSVs, were also calculated.

RESULTS

Our research findings suggested that although GT restricts the search data retrieval into weekly data points over a long period, our proposed approach could recover the daily search volume over the same investigation period to facilitate subsequent research analyses. In addition, the dynamic time warping diagrams show that the dynamic networks were capable of predicting the COVID-19 pandemic trends, in terms of the number of COVID-19 confirmed cases and severity risk scores.

CONCLUSIONS

The innovative method for handling GT search data and the application of MSVs and network analysis to broaden the potential for GT data are useful for predicting the pandemic risk. Further investigation of the GT dynamic network can focus on noncommunicable diseases, health-related behaviors, and misinformation on the internet.

摘要

背景

COVID-19 疫情爆发凸显了对及时监测疫情发展的高需求。谷歌趋势(GT)提供免费的搜索量数据,已被证明是一种可靠的预测和实时测量公共卫生问题的方法。之前的研究倾向于直接使用 GT 的相对搜索量来分析关联并预测大流行的进展。然而,GT 对搜索量数据的归一化和数据检索限制影响了数据分辨率,从而限制了使用 GT 数据预测疾病爆发的潜力。

目的

本研究旨在介绍一种合并算法,帮助恢复从 GT 提取的搜索量数据在长时间观测期内的分辨率和准确性。此外,本研究还旨在展示合并搜索量(MSV)在网络分析中的扩展应用,通过跟踪 COVID-19 大流行风险。

方法

我们从 GT 收集相对搜索量,并使用我们提出的合并算法将其转换为 MSV。使用滚动窗口方法编制选定的冠状病毒相关关键字的 MSV。计算 MSV 之间的相关性,形成动态网络。还计算了网络统计信息,包括 MSV 之间的网络密度和全局聚类系数。

结果

我们的研究结果表明,尽管 GT 将搜索数据检索限制在长时间内的每周数据点,但我们提出的方法可以恢复同一调查期间的每日搜索量,以方便后续的研究分析。此外,动态时间扭曲图表明,动态网络能够预测 COVID-19 大流行趋势,包括 COVID-19 确诊病例数和严重风险评分。

结论

处理 GT 搜索数据的创新方法以及 MSV 和网络分析的应用扩大了 GT 数据的潜力,有助于预测大流行风险。进一步研究 GT 动态网络可以关注非传染性疾病、与健康相关的行为和互联网上的错误信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ec0/10488898/74961a9db1b0/publichealth_v9i1e42446_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验