Suppr超能文献

全人群单细胞 RNA-seq 分析在多巴胺能神经元分化过程中的应用。

Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation.

机构信息

Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK.

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.

出版信息

Nat Genet. 2021 Mar;53(3):304-312. doi: 10.1038/s41588-021-00801-6. Epub 2021 Mar 4.

Abstract

Studying the function of common genetic variants in primary human tissues and during development is challenging. To address this, we use an efficient multiplexing strategy to differentiate 215 human induced pluripotent stem cell (iPSC) lines toward a midbrain neural fate, including dopaminergic neurons, and use single-cell RNA sequencing (scRNA-seq) to profile over 1 million cells across three differentiation time points. The proportion of neurons produced by each cell line is highly reproducible and is predictable by robust molecular markers expressed in pluripotent cells. Expression quantitative trait loci (eQTL) were characterized at different stages of neuronal development and in response to rotenone-induced oxidative stress. Of these, 1,284 eQTL colocalize with known neurological trait risk loci, and 46% are not found in the Genotype-Tissue Expression (GTEx) catalog. Our study illustrates how coupling scRNA-seq with long-term iPSC differentiation enables mechanistic studies of human trait-associated genetic variants in otherwise inaccessible cell states.

摘要

研究常见遗传变异在人体主要组织和发育过程中的功能具有挑战性。为了解决这个问题,我们使用一种高效的多重策略将 215 个人类诱导多能干细胞(iPSC)系分化为中脑神经命运,包括多巴胺能神经元,并使用单细胞 RNA 测序(scRNA-seq)在三个分化时间点对超过 100 万个细胞进行分析。每个细胞系产生的神经元比例具有高度的可重复性,并且可以通过多能细胞中表达的强大分子标记来预测。在神经元发育的不同阶段和对鱼藤酮诱导的氧化应激的反应中,对表达数量性状基因座(eQTL)进行了特征描述。其中,1284 个 eQTL 与已知的神经性状风险基因座共定位,46%的 eQTL 不在基因型组织表达(GTEx)目录中。我们的研究表明,如何将 scRNA-seq 与长期 iPSC 分化相结合,能够在其他无法进入的细胞状态下对与人类性状相关的遗传变异进行机制研究。

相似文献

1
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation.
Nat Genet. 2021 Mar;53(3):304-312. doi: 10.1038/s41588-021-00801-6. Epub 2021 Mar 4.
2
Optimizing expression quantitative trait locus mapping workflows for single-cell studies.
Genome Biol. 2021 Jun 24;22(1):188. doi: 10.1186/s13059-021-02407-x.
3
Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells.
Stem Cells Dev. 2014 Feb 15;23(4):406-20. doi: 10.1089/scd.2013.0412. Epub 2013 Nov 7.
5
NGN2 induces diverse neuron types from human pluripotency.
Stem Cell Reports. 2021 Sep 14;16(9):2118-2127. doi: 10.1016/j.stemcr.2021.07.006. Epub 2021 Aug 5.
6
Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells.
Stem Cells Transl Med. 2016 Sep;5(9):1133-44. doi: 10.5966/sctm.2015-0073. Epub 2016 Jun 24.
8
Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons.
Stem Cells Transl Med. 2019 Feb;8(2):112-123. doi: 10.1002/sctm.18-0036. Epub 2018 Nov 1.
9
A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons.
Autophagy. 2021 Apr;17(4):855-871. doi: 10.1080/15548627.2020.1739441. Epub 2020 Apr 14.

引用本文的文献

2
Single-cell sequencing: accurate disease detection.
Clin Transl Oncol. 2025 Aug 16. doi: 10.1007/s12094-025-04007-8.
3
Proteomic insights into the biology of dopaminergic neurons.
Front Mol Neurosci. 2025 Jul 30;18:1642519. doi: 10.3389/fnmol.2025.1642519. eCollection 2025.
4
Higher eQTL power reveals signals that boost GWAS colocalization.
bioRxiv. 2025 Aug 5:2025.08.05.668745. doi: 10.1101/2025.08.05.668745.
8
Disease-associated loci share properties with response eQTLs under common environmental exposures.
bioRxiv. 2025 May 4:2025.04.30.651602. doi: 10.1101/2025.04.30.651602.

本文引用的文献

1
A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe neurons.
Elife. 2020 Jun 22;9:e55523. doi: 10.7554/eLife.55523.
3
Brain metabolism and neurological symptoms in combined malonic and methylmalonic aciduria.
Orphanet J Rare Dis. 2020 Jan 22;15(1):27. doi: 10.1186/s13023-020-1299-7.
4
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat Methods. 2019 Dec;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0. Epub 2019 Nov 18.
6
Stem cell therapy for Parkinson's disease: safety and modeling.
Neural Regen Res. 2020 Jan;15(1):36-40. doi: 10.4103/1673-5374.264446.
7
Molecular and anatomical organization of the dorsal raphe nucleus.
Elife. 2019 Aug 14;8:e46464. doi: 10.7554/eLife.46464.
8
The serotonergic system and the control of breathing during development.
Respir Physiol Neurobiol. 2019 Dec;270:103255. doi: 10.1016/j.resp.2019.103255. Epub 2019 Jul 27.
9
Dynamic genetic regulation of gene expression during cellular differentiation.
Science. 2019 Jun 28;364(6447):1287-1290. doi: 10.1126/science.aaw0040.
10
Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity.
Cell. 2019 Jun 13;177(7):1873-1887.e17. doi: 10.1016/j.cell.2019.05.006. Epub 2019 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验