Suppr超能文献

通过将机器学习方法应用于多组织转录组数据来鉴定肉牛饲料效率的预测基因

Identification of Predictor Genes for Feed Efficiency in Beef Cattle by Applying Machine Learning Methods to Multi-Tissue Transcriptome Data.

作者信息

Chen Weihao, Alexandre Pâmela A, Ribeiro Gabriela, Fukumasu Heidge, Sun Wei, Reverter Antonio, Li Yutao

机构信息

College of Animal Science and Technology, Yangzhou University, Yangzhou, China.

CSIRO Agriculture and Food, St Lucia, QLD, Australia.

出版信息

Front Genet. 2021 Feb 16;12:619857. doi: 10.3389/fgene.2021.619857. eCollection 2021.

Abstract

Machine learning (ML) methods have shown promising results in identifying genes when applied to large transcriptome datasets. However, no attempt has been made to compare the performance of combining different ML methods together in the prediction of high feed efficiency (HFE) and low feed efficiency (LFE) animals. In this study, using RNA sequencing data of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle, and pituitary) from nine HFE and nine LFE Nellore bulls, we evaluated the prediction accuracies of five analytical methods in classifying FE animals. These included two conventional methods for differential gene expression (DGE) analysis (-test and edgeR) as benchmarks, and three ML methods: Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and combination of both RF and XGBoost (RX). Utility of a subset of candidate genes selected from each method for classification of FE animals was assessed by support vector machine (SVM). Among all methods, the smallest subsets of genes (117) identified by RX outperformed those chosen by -test, edgeR, RF, or XGBoost in classification accuracy of animals. Gene co-expression network analysis confirmed the interactivity existing among these genes and their relevance within the network related to their prediction ranking based on ML. The results demonstrate a great potential for applying a combination of ML methods to large transcriptome datasets to identify biologically important genes for accurately classifying FE animals.

摘要

机器学习(ML)方法在应用于大型转录组数据集时,已在识别基因方面显示出有前景的结果。然而,尚未有人尝试比较不同ML方法组合在预测高饲料效率(HFE)和低饲料效率(LFE)动物方面的性能。在本研究中,我们使用了9头HFE和9头LFE内洛尔公牛的五个组织(肾上腺、下丘脑、肝脏、骨骼肌和垂体)的RNA测序数据,评估了五种分析方法在对FE动物进行分类时的预测准确性。其中包括两种用于差异基因表达(DGE)分析的传统方法(t检验和edgeR)作为基准,以及三种ML方法:随机森林(RF)、极端梯度提升(XGBoost)以及RF和XGBoost的组合(RX)。通过支持向量机(SVM)评估了从每种方法中选择的候选基因子集对FE动物分类的效用。在所有方法中,RX识别出的最小基因子集(117个)在动物分类准确性方面优于t检验、edgeR、RF或XGBoost选择的基因子集。基因共表达网络分析证实了这些基因之间存在的相互作用以及它们在网络中与其基于ML的预测排名相关的相关性。结果表明,将ML方法组合应用于大型转录组数据集以识别用于准确分类FE动物的生物学重要基因具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdef/7921797/631a30b03134/fgene-12-619857-g001.jpg

相似文献

2
Genomic Prediction of Breeding Values Using a Subset of SNPs Identified by Three Machine Learning Methods.
Front Genet. 2018 Jul 4;9:237. doi: 10.3389/fgene.2018.00237. eCollection 2018.
4
Systems Biology Reveals and as Key Regulators of Feed Efficiency in Beef Cattle.
Front Genet. 2019 Mar 22;10:230. doi: 10.3389/fgene.2019.00230. eCollection 2019.
8
Bovine NR1I3 gene polymorphisms and its association with feed efficiency traits in Nellore cattle.
Meta Gene. 2014 Feb 20;2:206-17. doi: 10.1016/j.mgene.2014.01.003. eCollection 2014 Dec.

引用本文的文献

3
Single-Step Genome-Wide Association Study of Factors for Evaluated and Linearly Scored Traits in Swedish Warmblood Horses.
J Anim Breed Genet. 2025 Sep;142(5):499-512. doi: 10.1111/jbg.12923. Epub 2025 Jan 4.
4
Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.
Mol Ecol. 2025 Feb;34(3):e17626. doi: 10.1111/mec.17626. Epub 2024 Dec 13.
5
Lambs Grazing With Adult Ewes Prefer Forbs With High-Nutrient Content in Native Grasslands Dominated by and .
Ecol Evol. 2024 Nov 18;14(11):e70609. doi: 10.1002/ece3.70609. eCollection 2024 Nov.
6
Transcriptional response to an alternative diet on liver, muscle, and rumen of beef cattle.
Sci Rep. 2024 Jun 13;14(1):13682. doi: 10.1038/s41598-024-63619-2.
7
A review of machine learning models applied to genomic prediction in animal breeding.
Front Genet. 2023 Sep 6;14:1150596. doi: 10.3389/fgene.2023.1150596. eCollection 2023.
8
Predicting dry matter intake in beef cattle.
J Anim Sci. 2023 Jan 3;101. doi: 10.1093/jas/skad269.
9
Rumen Microbiota Predicts Feed Efficiency of Primiparous Nordic Red Dairy Cows.
Microorganisms. 2023 Apr 25;11(5):1116. doi: 10.3390/microorganisms11051116.
10
Feed efficiency in dairy sheep: An insight from the milk transcriptome.
Front Vet Sci. 2023 Apr 3;10:1122953. doi: 10.3389/fvets.2023.1122953. eCollection 2023.

本文引用的文献

2
Genome-Wide Epistatic Interaction Networks Affecting Feed Efficiency in Duroc and Landrace Pigs.
Front Genet. 2020 Feb 28;11:121. doi: 10.3389/fgene.2020.00121. eCollection 2020.
3
Rumen Bacteria and Serum Metabolites Predictive of Feed Efficiency Phenotypes in Beef Cattle.
Sci Rep. 2019 Dec 17;9(1):19265. doi: 10.1038/s41598-019-55978-y.
5
Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults.
Curr Med Sci. 2019 Aug;39(4):582-588. doi: 10.1007/s11596-019-2077-4. Epub 2019 Jul 25.
8
Systems Biology Reveals and as Key Regulators of Feed Efficiency in Beef Cattle.
Front Genet. 2019 Mar 22;10:230. doi: 10.3389/fgene.2019.00230. eCollection 2019.
10
Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle.
Animal. 2018 Dec;12(s2):s321-s335. doi: 10.1017/S1751731118001489. Epub 2018 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验