Suppr超能文献

机器学习模型在 2 型糖尿病风险预测中的应用:一项中国成年人横断面回顾性研究的结果。

Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults.

机构信息

Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.

School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.

出版信息

Curr Med Sci. 2019 Aug;39(4):582-588. doi: 10.1007/s11596-019-2077-4. Epub 2019 Jul 25.

Abstract

Type 2 diabetes mellitus (T2DM) has become a prevalent health problem in China, especially in urban areas. Early prevention strategies are needed to reduce the associated mortality and morbidity. We applied the combination of rules and different machine learning techniques to assess the risk of development of T2DM in an urban Chinese adult population. A retrospective analysis was performed on 8000 people with non-diabetes and 3845 people with T2DM in Nanjing. Multilayer Perceptron (MLP), AdaBoost (AD), Trees Random Forest (TRF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB) machine learning techniques with 10 cross validation methods were used with the proposed model for the prediction of the risk of development of T2DM. The performance of these models was evaluated with accuracy, precision, sensitivity, specificity, and area under receiver operating characteristic (ROC) curve (AUC). After comparison, the prediction accuracy of the different five machine models was 0.87, 0.86, 0.86, 0.86 and 0.86 respectively. The combination model using the same voting weight of each component was built on T2DM, which was performed better than individual models. The findings indicate that, combining machine learning models could provide an accurate assessment model for T2DM risk prediction.

摘要

2 型糖尿病(T2DM)在中国已成为一个普遍的健康问题,尤其是在城市地区。需要采取早期预防策略来降低相关的死亡率和发病率。我们应用规则和不同的机器学习技术的组合来评估中国城市成年人患 T2DM 的风险。对南京 8000 名非糖尿病患者和 3845 名 T2DM 患者进行了回顾性分析。使用多层感知机(MLP)、自适应增强(AD)、随机森林树(TRF)、支持向量机(SVM)和梯度提升树(GTB)等机器学习技术,结合 10 种交叉验证方法,对 T2DM 发病风险的预测进行了研究。采用准确性、精度、灵敏度、特异性和接受者操作特征(ROC)曲线下面积(AUC)来评估这些模型的性能。经过比较,五种不同机器模型的预测准确性分别为 0.87、0.86、0.86、0.86 和 0.86。基于 T2DM 的组合模型使用每个组件相同的投票权重进行构建,其性能优于单个模型。研究结果表明,结合机器学习模型可以为 T2DM 风险预测提供一个准确的评估模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验