Suppr超能文献

基于机器学习方法的心室颤动和心动过速分类

Ventricular fibrillation and tachycardia classification using a machine learning approach.

作者信息

Li Qiao, Rajagopalan Cadathur, Clifford Gari D

出版信息

IEEE Trans Biomed Eng. 2014 Jun;61(6):1607-13. doi: 10.1109/TBME.2013.2275000. Epub 2013 Jul 26.

Abstract

Correct detection and classification of ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) is of pivotal importance for an automatic external defibrillator and patient monitoring. In this paper, a VF/VT classification algorithm using a machine learning method, a support vector machine, is proposed. A total of 14 metrics were extracted from a specific window length of the electrocardiogram (ECG). A genetic algorithm was then used to select the optimal variable combinations. Three annotated public domain ECG databases (the American Heart Association Database, the Creighton University Ventricular Tachyarrhythmia Database, and the MIT-BIH Malignant Ventricular Arrhythmia Database) were used as training, test, and validation datasets. Different window sizes, varying from 1 to 10 s were tested. An accuracy (Ac) of 98.1%, sensitivity (Se) of 98.4%, and specificity (Sp) of 98.0% were obtained on the in-sample training data with 5 s-window size and two selected metrics. On the out-of-sample validation data, an Ac of 96.3% ± 3.4%, Se of 96.2% ± 2.7%, and Sp of 96.2% ± 4.6% were obtained by fivefold cross validation. The results surpass those of current reported methods.

摘要

正确检测和分类心室颤动(VF)和快速室性心动过速(VT)对于自动体外除颤器和患者监测至关重要。本文提出了一种使用机器学习方法——支持向量机的VF/VT分类算法。从心电图(ECG)的特定窗口长度中提取了总共14个指标。然后使用遗传算法选择最佳变量组合。三个带注释的公共领域ECG数据库(美国心脏协会数据库、克里顿大学室性快速心律失常数据库和麻省理工学院-布列根和妇女医院恶性室性心律失常数据库)被用作训练、测试和验证数据集。测试了从1到10秒不等的不同窗口大小。在样本内训练数据上,使用5秒窗口大小和两个选定指标时,准确率(Ac)为98.1%,灵敏度(Se)为98.4%,特异性(Sp)为98.0%。在样本外验证数据上,通过五重交叉验证获得的Ac为96.3%±3.4%,Se为96.2%±2.7%,Sp为96.2%±4.6%。结果超过了目前报道的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验