Suppr超能文献

用于耳部畸形重建的形状稳定耳廓结构的生物制造。

Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities.

作者信息

Otto I A, Capendale P E, Garcia J P, de Ruijter M, van Doremalen R F M, Castilho M, Lawson T, Grinstaff M W, Breugem C C, Kon M, Levato R, Malda J

机构信息

Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.

Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.

出版信息

Mater Today Bio. 2021 Jan 21;9:100094. doi: 10.1016/j.mtbio.2021.100094. eCollection 2021 Jan.

Abstract

Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.

摘要

人类耳廓的生物工程仍然是一项重大挑战,其中复杂独特的形状、高质量新软骨的生成以及形状保持是关键因素。未来基于再生医学的耳廓软骨重建方法将受益于多种策略的巧妙结合。我们制造耳形构建体的方法采用了混合生物打印技术、最近鉴定出的祖细胞群体、先前经过验证的生物材料以及智能支架设计。具体而言,我们通过熔融沉积建模生成了3D打印的聚己内酯(PCL)支架,在支架内对负载人耳廓软骨祖细胞的甲基丙烯酰化明胶(gelMA)水凝胶进行光交联,并在软骨生成培养基中培养该生物工程结构30天。我们的结果表明,制造过程保持了细胞的活力和软骨生成表型,PCL与gelMA组合的耳廓构建体的压缩性能与天然耳廓软骨相似,并且与3D数字模型相比,生物制造的混合耳廓结构在耳廓结构的周边和中心区域均表现出优异的形状保真度以及类软骨基质的沉积。我们的策略提供了具有适当力学性能的解剖学增强型耳廓结构,确保在动态培养期间耳廓形状得到充分保持,并使具有软骨生成能力的祖细胞在整个耳廓构建体中产生大量类软骨基质。智能支架设计与3D生物打印和软骨祖细胞的结合有望为耳廓重建开发出可临床转化的再生医学策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0563/7903133/fe7ee808ca57/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验