Humboldt-Universität zu Berlin, Department of Geography, Unter den Linden 6, 10099 Berlin, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Computational Landscape Ecology, Permoserstraße 15, 04318 Leipzig, Germany.
Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1, 210095 Nanjing, China.
Sci Total Environ. 2020 Aug 10;729:138244. doi: 10.1016/j.scitotenv.2020.138244. Epub 2020 Apr 13.
Soil organic carbon (SOC) and soil total nitrogen (STN) are important indicators of soil health and play a key role in the global carbon and nitrogen cycles. High-resolution radar Sentinel-1 and multispectral Sentinel-2 images have the potential to investigate soil spatial distribution information over a large area, although Sentinel-1 and Sentinel-2 data have rarely been combined to map either SOC or STN content. In this study, we applied machine learning techniques to map both SOC and STN content in the southern part of Central Europe using digital elevation model (DEM) derivatives, multi-temporal Sentinel-1 and Sentinel-2 data, and evaluated the potential of different remote sensing sensors (Sentinel-1 and Sentinel-2) to predict SOC and STN content. Four machine-learners including random forest (RF), boosted regression trees (BRT), support vector machine (SVM) and Bagged CART were used to construct predictive models of SOC and STN contents based on 179 soil samples and different combinations of environmental covariates. The performance of these models was evaluated based on a 10-fold cross-validation method by three statistical indicators. Overall, the BRT model performed better than RF, SVM and Bagged CART, and these models yielded similar spatial distribution patterns of SOC and STN. Our results showed that multi-source sensor methods provided more accurate predictions of SOC and STN contents than individual sensors. The application of radar Sentinel-1 and multispectral Sentinel-2 images proved useful for predicting SOC and STN. A combination of Sentinel-1/2-derived predictors and DEM derivatives yielded the highest prediction accuracy. The prediction accuracy changed with and without the Sentinel-1/2-derived predictors, with the R for estimating both SOC and STN content using the BRT model increasing by 12.8% and 18.8%, respectively. Topographic variables were the main explanatory variables for SOC and STN predictions, where elevation was assigned as the variable with the most importance by the models. The results of this study illustrate the potential of free high-resolution radar Sentinel-1 and multispectral Sentinel-2 data as input when developing SOC and STN prediction models.
土壤有机碳(SOC)和土壤全氮(STN)是土壤健康的重要指标,在全球碳氮循环中起着关键作用。高分辨率雷达 Sentinel-1 和多光谱 Sentinel-2 图像具有调查大面积土壤空间分布信息的潜力,尽管 Sentinel-1 和 Sentinel-2 数据很少结合起来绘制 SOC 或 STN 含量图。在这项研究中,我们应用机器学习技术,利用数字高程模型(DEM)衍生品、多时相 Sentinel-1 和 Sentinel-2 数据,绘制了中欧南部地区的 SOC 和 STN 含量图,并评估了不同遥感传感器(Sentinel-1 和 Sentinel-2)预测 SOC 和 STN 含量的潜力。我们使用了包括随机森林(RF)、提升回归树(BRT)、支持向量机(SVM)和袋装 CART 在内的四种机器学习算法,根据 179 个土壤样本和不同的环境协变量组合,构建了 SOC 和 STN 含量的预测模型。这些模型的性能是通过 10 折交叉验证方法,基于三个统计指标来评估的。总体而言,BRT 模型的表现优于 RF、SVM 和 Bagged CART,这些模型产生了 SOC 和 STN 的相似空间分布模式。我们的结果表明,多源传感器方法比单个传感器提供了更准确的 SOC 和 STN 含量预测。雷达 Sentinel-1 和多光谱 Sentinel-2 图像的应用证明对 SOC 和 STN 的预测是有用的。Sentinel-1/2 衍生预测因子和 DEM 衍生品的结合产生了最高的预测精度。预测精度随着是否包含 Sentinel-1/2 衍生预测因子而变化,BRT 模型对 SOC 和 STN 含量的估计 R 值分别增加了 12.8%和 18.8%。地形变量是 SOC 和 STN 预测的主要解释变量,其中高程是模型赋予最重要的变量。本研究结果表明,当开发 SOC 和 STN 预测模型时,免费的高分辨率雷达 Sentinel-1 和多光谱 Sentinel-2 数据作为输入具有潜力。