Suppr超能文献

利用 Sentinel 2 图像和梯度提升回归树提高于约克塞瓦平原土壤有机碳储量的空间估算精度。

Improvement of spatial estimation for soil organic carbon stocks in Yuksekova plain using Sentinel 2 imagery and gradient descent-boosted regression tree.

机构信息

Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Siirt University, Siirt, Turkey.

, Sanliurfa, Turkey.

出版信息

Environ Sci Pollut Res Int. 2023 Apr;30(18):53253-53274. doi: 10.1007/s11356-023-26064-8. Epub 2023 Feb 28.

Abstract

Carbon sequestration in earth surface is higher than the atmosphere, and the amount of carbon stored in wetlands is much greater than all other land surfaces. The purpose of this study was to estimate soil organic carbon stocks (SOCS) and investigate spatial distribution pattern of Yuksekova wetlands and surrounding lands in Hakkari province of Turkey using machine learning and remote sensing data. Disturbed and undisturbed soil samples were collected from 10-cm depth in 50 locations differed with land use and land cover. Vegetation, soil, and moisture indices were calculated using Sentinel 2 Multispectral Sensor Instrument (MSI) data. Significant correlations (p≤0.01) were obtained between the indices and SOCS; thus, the remote sensing indices (ARVI 0.43, BI -0.43, GSI -0.39, GNDI 0.44, NDVI 0.44, NDWI 0.38, and SRCI 0.51) were used as covariates in multi-layer perceptron neural network (MLP) and gradient descent-boosted regression tree (GBDT) machine learning models. Mean absolute error, root mean square error, and mean absolute percentage error were 3.94 (Mg C ha ), 6.64 (Mg C ha), and 9.97%, respectively. The simple ratio clay index (SRCI), which represents the soil texture, was the most important factor in the SOCS estimation variance. In addition, the relationship between SRCI and Topsoil Grain Size Index revealed that topsoil clay content is a highly important parameter in spatial variation of SOCS. The spatial SOCS values obtained using the GBDT model and the mean SOCS values of the CORINE land cover classes were significantly different. The land cover has a significant effect on SOC in Yuksekova plain. The mean SOCS for continuously ponded fields was 45.58 Mg C ha, which was significantly different from the mean SOCS of arable lands. The mean SOCS in arable lands, with significant areas of natural vegetation, was 50.22 Mg C ha and this amount was significantly higher from the SOCS of other land covers (p<0.01). The wetlands had the highest SOCS (61.46 Mg C ha), followed by the lands principally occupied by natural vegetation and used as rangelands around the wetland (50.22 Mg C ha). Environmental conditions had significant effect on SOCS in the study area. The use of remote sensing indices instead of using single bands as estimators in the GBDT algorithm minimized radiometric errors, and reliable spatial SOCS information was obtained by using the estimators. Therefore, the spatial estimation of SOCS can be successfully determined with up-to-date machine learning algorithms only using remote sensing predictor variables. Reliable estimation of SOCS in wetlands and surrounding lands can help understand policy and decision makers the importance of wetlands in mitigating the negative impacts of global warming.

摘要

地表的碳固存高于大气,湿地储存的碳量远远大于所有其他陆地表面。本研究旨在利用机器学习和遥感数据估算土耳其哈卡里省 Yuksekova 湿地及其周边土地的土壤有机碳储量 (SOCS),并调查其空间分布模式。从 50 个不同土地利用和土地覆盖的位置采集了 10cm 深度的扰动和未扰动土壤样本。使用 Sentinel 2 多光谱传感器仪器 (MSI) 数据计算植被、土壤和湿度指数。各指数与 SOCS 之间存在显著相关性 (p≤0.01);因此,在多层感知机神经网络 (MLP) 和梯度下降增强回归树 (GBDT) 机器学习模型中,将遥感指数 (ARVI 0.43、BI -0.43、GSI -0.39、GNDI 0.44、NDVI 0.44、NDWI 0.38 和 SRCI 0.51) 用作协变量。平均绝对误差、均方根误差和平均绝对百分比误差分别为 3.94 (Mg C ha )、6.64 (Mg C ha )和 9.97%。简单比值粘土指数 (SRCI) 代表土壤质地,是 SOCS 估计方差的最重要因素。此外,SRCI 与表土粒度指数之间的关系表明,表土粘含量是 SOCS 空间变化的一个重要参数。使用 GBDT 模型获得的 SOCS 空间值与 CORINE 土地覆盖类别的平均 SOCS 值有显著差异。土地覆盖对 Yuksekova 平原的 SOC 有显著影响。连续池塘区的平均 SOCS 为 45.58 Mg C ha,与耕地的平均 SOCS 有显著差异。耕地的平均 SOCS 为 50.22 Mg C ha,并有大量的自然植被,这一数值明显高于其他土地覆盖类型的 SOCS (p<0.01)。湿地的 SOCS 最高 (61.46 Mg C ha),其次是主要由自然植被占据的土地,这些土地被用作湿地周围的牧场 (50.22 Mg C ha)。环境条件对研究区的 SOCS 有显著影响。在 GBDT 算法中,使用遥感指数而不是单一波段作为估算值,可以最小化辐射误差,并使用估算值获得可靠的空间 SOCS 信息。因此,仅使用遥感预测变量,就可以利用最新的机器学习算法成功确定 SOCS 的空间估计值。对湿地及其周边土地的 SOCS 进行可靠估算,有助于决策者了解湿地在缓解全球变暖负面影响方面的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验