Suppr超能文献

基于机器学习方法的低密度脂蛋白胆固醇估算。

Estimation of low-density lipoprotein cholesterol by machine learning methods.

机构信息

Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.

Department of Biochemistry, Democritus Diagnostic Center, Eustathios street 1, Alexandroupolis, Greece.

出版信息

Clin Chim Acta. 2021 Jun;517:108-116. doi: 10.1016/j.cca.2021.02.020. Epub 2021 Mar 2.

Abstract

BACKGROUND

Accurate determination of low-density lipoprotein cholesterol (LDL) is important for coronary heart disease risk assessment and atherosclerosis. Apart from direct determination of LDL values, models (or equations) are used. A more recent approach is the use of machine learning (ML) algorithms.

METHODS

ML algorithms were used for LDL determination (regression) from cholesterol, HDL and triglycerides. The methods used were multivariate Linear Regression (LR), Support Vector Machines (SVM), Extreme Gradient Boosting (XGB) and Deep Neural Networks (DNN), in both larger and smaller data sets. Also, LDL values were classified according to both NCEP III and European Society of Cardiology guidelines.

RESULTS

The performance of regression was assessed by the Standard Error of the Estimate. ML methods performed better than established equations (Friedewald and Martin). The performance all ML methods was comparable for large data sets and was affected by the divergence of the train and test data sets, as measured by the Jensen-Shannon divergence. Classification accuracy was not satisfactory for any model.

CONCLUSIONS

Direct determination of LDL is the most preferred route. When not available, ML methods can be a good substitute. Not only deep neural networks but other, less computationally expensive methods can work as well as deep learning.

摘要

背景

准确测定低密度脂蛋白胆固醇(LDL)对于冠心病风险评估和动脉粥样硬化非常重要。除了直接测定 LDL 值外,还可以使用模型(或方程)。最近的一种方法是使用机器学习(ML)算法。

方法

使用 ML 算法从胆固醇、HDL 和甘油三酯中确定 LDL(回归)。使用的方法有多元线性回归(LR)、支持向量机(SVM)、极端梯度提升(XGB)和深度神经网络(DNN),包括较大和较小的数据集。此外,根据 NCEP III 和欧洲心脏病学会指南对 LDL 值进行分类。

结果

通过估计的标准误差评估回归性能。ML 方法的性能优于已建立的方程(Friedewald 和 Martin)。对于大数据集,所有 ML 方法的性能都相当,并且受到训练和测试数据集之间差异的影响,该差异通过 Jensen-Shannon 散度来衡量。对于任何模型,分类准确性都不尽如人意。

结论

直接测定 LDL 是最优选的方法。当无法直接测定 LDL 时,ML 方法可以作为替代方法。不仅是深度神经网络,其他计算成本较低的方法也可以像深度学习一样有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验