Suppr超能文献

迷你综述:气道高反应性的神经机制。

Mini review: Neural mechanisms underlying airway hyperresponsiveness.

机构信息

Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.

Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.

出版信息

Neurosci Lett. 2021 Apr 23;751:135795. doi: 10.1016/j.neulet.2021.135795. Epub 2021 Mar 2.

Abstract

Neural changes underly hyperresponsiveness in asthma and other airway diseases. Afferent sensory nerves, nerves within the brainstem, and efferent parasympathetic nerves all contribute to airway hyperresponsiveness. Inflammation plays a critical role in these nerve changes. Chronic inflammation and pre-natal exposures lead to increased airway innervation and structural changes. Acute inflammation leads to shifts in neurotransmitter expression of afferent nerves and dysfunction of M muscarinic receptors on efferent nerve endings. Eosinophils and macrophages drive these changes through release of inflammatory mediators. Novel tools, including optogenetics, two photon microscopy, and optical clearing and whole mount microscopy, allow for improved studies of the structure and function of airway nerves and airway hyperresponsiveness.

摘要

神经变化是哮喘和其他气道疾病高反应性的基础。传入感觉神经、脑干内的神经和传出副交感神经都有助于气道高反应性。炎症在这些神经变化中起着关键作用。慢性炎症和产前暴露导致气道神经支配增加和结构改变。急性炎症导致传入神经递质表达的转变和传出神经末梢 M 型毒蕈碱受体功能障碍。嗜酸性粒细胞和巨噬细胞通过释放炎症介质来驱动这些变化。新工具,包括光遗传学、双光子显微镜和光学透明化及全器官显微镜,可用于改善气道神经结构和功能以及气道高反应性的研究。

相似文献

1
Mini review: Neural mechanisms underlying airway hyperresponsiveness.
Neurosci Lett. 2021 Apr 23;751:135795. doi: 10.1016/j.neulet.2021.135795. Epub 2021 Mar 2.
2
Eosinophil recruitment to the airway nerves.
J Allergy Clin Immunol. 2001 Feb;107(2):211-8. doi: 10.1067/mai.2001.112940.
3
Role of parasympathetic nerves and muscarinic receptors in allergy and asthma.
Chem Immunol Allergy. 2012;98:48-69. doi: 10.1159/000336498. Epub 2012 Jun 26.
4
Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function.
Am J Physiol. 1997 Jul;273(1 Pt 1):L93-103. doi: 10.1152/ajplung.1997.273.1.L93.
5
Eosinophil and airway nerve interactions in asthma.
J Leukoc Biol. 2018 Jul;104(1):61-67. doi: 10.1002/JLB.3MR1117-426R. Epub 2018 Apr 6.
6
Double-stranded RNA causes airway hyperreactivity and neuronal M2 muscarinic receptor dysfunction.
J Appl Physiol (1985). 2002 Apr;92(4):1417-22. doi: 10.1152/japplphysiol.00934.2001.
7
Autonomic innervation of human airways: structure, function, and pathophysiology in asthma.
Neuroimmunomodulation. 1999 May-Jun;6(3):145-59. doi: 10.1159/000026376.
9
Muscarinic receptors and control of airway smooth muscle.
Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 3):S154-60. doi: 10.1164/ajrccm.158.supplement_2.13tac120.
10
Neural control of airway inflammation.
Curr Allergy Asthma Rep. 2009 Nov;9(6):484-90. doi: 10.1007/s11882-009-0071-9.

引用本文的文献

1
Chemoreflex function in pulmonary diseases - A review.
J Physiol. 2025 Aug;603(16):4461-4482. doi: 10.1113/JP286655. Epub 2025 Jul 31.
2
Recent advances in research on common targets of neurological and sex hormonal influences on asthma.
Clin Transl Allergy. 2025 Jan;15(1):e70022. doi: 10.1002/clt2.70022.
3
Maternal high-fat diet programs offspring airway hyperinnervation and hyperresponsiveness.
JCI Insight. 2025 Jan 9;10(1):e181070. doi: 10.1172/jci.insight.181070.
4
Cracking the Code of the Jugular Vagal Sensory Neurons in Allergic Airway Responsiveness.
Am J Respir Cell Mol Biol. 2025 Apr;72(4):346-348. doi: 10.1165/rcmb.2024-0445ED.
5
Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet.
Am J Physiol Lung Cell Mol Physiol. 2024 Dec 1;327(6):L867-L875. doi: 10.1152/ajplung.00213.2024. Epub 2024 Sep 24.
7
Neonatal rhinorrhea, heart rate variability, and childhood exercise-induced wheeze.
J Allergy Clin Immunol Glob. 2023 Jul 19;2(4):100149. doi: 10.1016/j.jacig.2023.100149. eCollection 2023 Nov.
8
The ABCs and DEGs (Differentially Expressed Genes) of Airway Hyperresponsiveness.
Am J Respir Crit Care Med. 2023 Jun 15;207(12):1545-1546. doi: 10.1164/rccm.202303-0614ED.
9
Vagal Reflexes in Airway Hyperreactivity: Novel Pathways and a Note of Caution for Studies in Mice.
Am J Respir Cell Mol Biol. 2023 Feb;68(2):231-233. doi: 10.1165/rcmb.2022-0334LE.
10
Neural control of the lower airways: Role in cough and airway inflammatory disease.
Handb Clin Neurol. 2022;188:373-391. doi: 10.1016/B978-0-323-91534-2.00013-8.

本文引用的文献

1
Airway Sensory Nerve Density Is Increased in Chronic Cough.
Am J Respir Crit Care Med. 2021 Feb 1;203(3):348-355. doi: 10.1164/rccm.201912-2347OC.
2
Cholinergic neuroplasticity in asthma driven by TrkB signaling.
FASEB J. 2020 Jun;34(6):7703-7717. doi: 10.1096/fj.202000170R. Epub 2020 Apr 11.
3
Transient receptor potential ankyrin-1 causes rapid bronchodilation via nonepithelial PGE.
Am J Physiol Lung Cell Mol Physiol. 2020 May 1;318(5):L943-L952. doi: 10.1152/ajplung.00277.2019. Epub 2020 Apr 1.
4
Optogenetic Control of Airway Cholinergic Neurons .
Am J Respir Cell Mol Biol. 2020 Apr;62(4):423-429. doi: 10.1165/rcmb.2019-0378MA.
5
IL-5 Exposure Increases Lung Nerve Density and Airway Reactivity in Adult Offspring.
Am J Respir Cell Mol Biol. 2020 Apr;62(4):493-502. doi: 10.1165/rcmb.2019-0214OC.
6
An Atlas of Vagal Sensory Neurons and Their Molecular Specialization.
Cell Rep. 2019 May 21;27(8):2508-2523.e4. doi: 10.1016/j.celrep.2019.04.096.
7
Sphingosine-1-phosphate activates mouse vagal airway afferent C-fibres via S1PR3 receptors.
J Physiol. 2019 Apr;597(7):2007-2019. doi: 10.1113/JP277521. Epub 2019 Feb 21.
9
Eosinophils increase airway sensory nerve density in mice and in human asthma.
Sci Transl Med. 2018 Sep 5;10(457). doi: 10.1126/scitranslmed.aar8477.
10
TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.
Allergy Asthma Immunol Res. 2018 May;10(3):216-224. doi: 10.4168/aair.2018.10.3.216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验