Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Glob Chang Biol. 2021 Jun;27(12):2633-2644. doi: 10.1111/gcb.15584. Epub 2021 Mar 17.
Increasing soil organic carbon (SOC) storage is a key strategy to mitigate rising atmospheric CO , yet SOC pools often appear to saturate, or increase at a declining rate, as carbon (C) inputs increase. Soil C saturation is commonly hypothesized to result from the finite amount of reactive mineral surface area available for retaining SOC, and is accordingly represented in SOC models as a physicochemically determined SOC upper limit. However, mineral-associated SOC is largely microbially generated. In this perspective, we present the hypothesis that apparent SOC saturation patterns could emerge as a result of ecological constraints on microbial biomass-for example, via competition or predation-leading to reduced C flow through microbes and a reduced rate of mineral-associated SOC formation as soil C inputs increase. Microbially explicit SOC models offer an opportunity to explore this hypothesis, yet most of these models predict linear microbial biomass increases with C inputs and insensitivity of SOC to input rates. Synthesis of 54 C addition studies revealed constraints on microbial biomass as C inputs increase. Different hypotheses limiting microbial density were embedded in a three-pool SOC model without explicit limits on mineral surface area. As inputs increased, the model demonstrated either no change, linear, or apparently saturating increases in mineral-associated and particulate SOC pools. Taken together, our results suggest that microbial constraints are common and could lead to reduced mineral-associated SOC formation as input rates increase. We conclude that SOC responses to altered C inputs-or any environmental change-are influenced by the ecological factors that limit microbial populations, allowing for a wider range of potential SOC responses to stimuli. Understanding how biotic versus abiotic factors contribute to these patterns will better enable us to predict and manage soil C dynamics.
增加土壤有机碳(SOC)储量是缓解大气中 CO2 浓度上升的关键策略,但随着碳(C)输入的增加,SOC 库似乎常常达到饱和状态,或者以递减的速率增加。SOC 饱和通常被假设为由于可用于保留 SOC 的反应性矿物表面面积有限而导致的,因此在 SOC 模型中被表示为一个物理化学确定的 SOC 上限。然而,与矿物结合的 SOC 在很大程度上是微生物产生的。在这种观点下,我们提出了这样一种假设,即表观 SOC 饱和模式可能是由于微生物生物量的生态限制而出现的,例如通过竞争或捕食导致通过微生物的 C 流减少,以及随着土壤 C 输入的增加,与矿物结合的 SOC 形成的速率降低。微生物明确的 SOC 模型提供了探索这一假设的机会,但大多数这些模型预测微生物生物量会随着 C 输入的线性增加而增加,并且 SOC 对输入速率不敏感。对 54 项 C 添加研究的综合分析揭示了随着 C 输入的增加,微生物生物量受到限制。在没有明确限制矿物表面积的三个 SOC 模型中,嵌入了限制微生物密度的不同假设。随着输入的增加,模型表现出矿物结合和颗粒状 SOC 库要么没有变化,要么呈线性增加,要么表现出明显的饱和增加。总的来说,我们的研究结果表明,微生物限制是普遍存在的,并且随着输入速率的增加,可能会导致与矿物结合的 SOC 形成减少。我们得出结论,SOC 对改变的 C 输入的响应——或者任何环境变化——都受到限制微生物种群的生态因素的影响,这为 SOC 对刺激的潜在响应提供了更广泛的范围。了解生物因素和非生物因素对这些模式的贡献将使我们能够更好地预测和管理土壤 C 动态。