Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany.
Ligandis Biomarker Diagnostics, Dorfstr. 14, 18276 Gülzow-Prüzen, Germany.
Cells. 2021 Feb 24;10(3):482. doi: 10.3390/cells10030482.
The bioactivity of the IGF system is not a function of isolated hormone concentrations in a given biological matrix. Instead, the biological activities of IGFs are regulated by IGFBPs, IGFBP proteases, and inhibitors of IGFBP proteases. Therefore, assays based on IGF-related bioactivity may describe functions of the complete IGF system in a given biological matrix. Of particular interest are the IGF system effects on the AKT/mTOR pathway, as a dominant system for controlling growth, metabolism, and aging. In order to improve the sensitivity of IGF-dependent bioactivity, we made use of the known short-term and enhancing effects of IGFBP2 on the intracellular PI3K pathway. As a specific readout of this pathway, and further as a marker of the mTOR pathway, we assessed the phosphorylation of AKT-Ser473. Preincubation using IGFBP2 enhanced IGF1-dependent AKT-Ser473 phosphorylation in our experimental system. The assay's specificity was demonstrated by inhibition of IGF1 receptors outside or inside the cell, using antiserum or small molecule inhibitors, which reduced AKT phosphorylation in response to exogenous IGF1 ( < 0.05). The maximal response of AKT phosphorylation was recorded 15 to 60 min after the addition of IGF1 to cell monolayers ( < 0.001). In our cellular system, insulin induced AKT phosphorylation only at supra-physiological concentrations (µM). Using this novel assay, we identified the differential biological activity of the IGF system in AKT-Ser473 phosphorylation in serum (mouse, naked mole rat, and human), in cerebrospinal fluid (human), and in colostrum or mature milk samples (dairy cow). We have developed a sensitive and robust bioassay to assess the IGF-related activation of the AKT/mTOR pathway. The assay works efficiently and does not require expensive cell culture systems. By using capillary immuno-electrophoresis, the readout of IGF-related bioactivity is substantially accelerated, requiring a minimum of hands-on time. Importantly, the assay system is useful for studying IGF-related activity in the AKT/mTOR pathway in a broad range of biological matrices.
IGF 系统的生物活性不是特定生物基质中孤立激素浓度的功能。相反,IGFs 的生物学活性受 IGFBPs、IGFBP 蛋白酶和 IGFBP 蛋白酶抑制剂调节。因此,基于 IGF 相关生物活性的测定方法可以描述特定生物基质中完整 IGF 系统的功能。特别感兴趣的是 IGF 系统对 AKT/mTOR 途径的影响,因为该途径是控制生长、代谢和衰老的主要系统。为了提高 IGF 依赖性生物活性的灵敏度,我们利用了 IGFBP2 对细胞内 PI3K 途径的短期增强作用。作为该途径的特定读出,并且进一步作为 mTOR 途径的标志物,我们评估了 AKT-Ser473 的磷酸化。在我们的实验系统中,使用 IGFBP2 进行预孵育增强了 IGF1 依赖性 AKT-Ser473 磷酸化。通过在细胞内外使用抗血清或小分子抑制剂抑制 IGF1 受体,证明了该测定方法的特异性,这减少了对外源性 IGF1 的 AKT 磷酸化(<0.05)。在添加 IGF1 后 15 至 60 分钟记录 AKT 磷酸化的最大反应(<0.001)。在我们的细胞系统中,胰岛素仅在超生理浓度(µM)下诱导 AKT 磷酸化。使用这种新的测定方法,我们确定了 IGF 系统在血清(鼠、裸鼹鼠和人)、脑脊液(人)以及初乳或成熟乳样本(奶牛)中的 AKT-Ser473 磷酸化中的差异生物学活性。我们开发了一种灵敏且强大的生物测定法来评估 AKT/mTOR 途径中与 IGF 相关的激活。该测定法效率高,不需要昂贵的细胞培养系统。通过使用毛细管免疫电泳,IGF 相关生物活性的读出大大加快,所需的手动时间最少。重要的是,该测定系统可用于研究 AKT/mTOR 途径中广泛的生物基质中的 IGF 相关活性。