González-Durruthy Michael, Concu Riccardo, Ruso Juan M, Cordeiro M Natália D S
Department of Chemistry and Biochemistry, LAQV@REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Biology (Basel). 2021 Feb 25;10(3):171. doi: 10.3390/biology10030171.
Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies suggest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the concentration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oligomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Performed docking studies denote the best crystallography binding pose obtained for the docking complexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the thermodynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = -6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interactions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and fractal surface analysis were performed to study conformational perturbations induced by SWCNT. Our results suggest that interaction may be triggering abnormal allosteric responses and signals propagation in the inter-residue network, which could affect the substrate recognition ligand geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, using results of in vitro and docking studies. Results show that this method may be used for the fast prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming techniques. Overall, the obtained results may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and potential biomedical application in precision nanomedicine.
单壁碳纳米管可通过抑制作用诱导线粒体F0F1 - ATP酶产生纳米毒性。为全面表征引发毒性的作用机制,我们开发了一种基于实验与计算研究相结合的新方法,因为仅使用一种或几种技术可能无法充分描述这些现象。为此,将亚线粒体颗粒(SMP)中的体外抑制反应与对接、弹性网络模型、分形表面分析和纳米定量构效关系(Nano - QSTR)模型相结合。体外研究表明,对于原始型和羧基化型单壁碳纳米管(SWCNT),F0F1 - ATP酶在SMP中的抑制反应强烈依赖于浓度测定(3至5μg/mL)。此外,两种SWCNT均显示出一种相互作用抑制模式,类似于寡霉素A(特异性线粒体F0F1 - ATP酶抑制剂,可阻断c环F0亚基)。进行的对接研究表明,基于结合自由能(FEB)获得的对接复合物的最佳晶体学结合姿势,从热力学角度来看与体外证据吻合良好,亲和力顺序如下:FEB(寡霉素A/F0 - ATP酶复合物)= - 9.8 kcal/mol > FEB(羧基化SWCNT/F0 - ATP酶复合物)= - 6.8 kcal/mol ~ FEB(原始型SWCNT复合物)= - 5.9 kcal/mol,主要是与关键F0 - ATP酶结合位点残基(苯丙氨酸55和苯丙氨酸64)的范德华疏水纳米相互作用。进行弹性网络模型和分形表面分析以研究SWCNT诱导的构象扰动。我们的结果表明,相互作用可能引发残基间网络中的异常变构反应和信号传播,这可能会影响F0F1 - ATP酶的底物识别配体几何特异性(顺序为原始型SWCNT > 羧基化SWCNT)。此外,已开发出纳米定量构效关系(Nano - QSTR)模型,利用体外和对接研究结果预测两种SWCNT诱导的毒性。结果表明,该方法可用于快速预测SWCNT诱导的纳米毒性,避免耗时耗钱的技术。总体而言,所获得的结果可能为更好地理解和预测新的纳米毒性机制、基于合理药物设计的纳米技术以及精密纳米医学中的潜在生物医学应用开辟新途径。