Suppr超能文献

人工智能驱动的鉴别诊断清单对医生诊断准确性的影响:一项开放标签随机对照研究。

Efficacy of Artificial-Intelligence-Driven Differential-Diagnosis List on the Diagnostic Accuracy of Physicians: An Open-Label Randomized Controlled Study.

机构信息

Department of General Internal Medicine, Nagano Chuo Hospital, Nagano 380-0814, Japan.

Department of Diagnostic and Generalist Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan.

出版信息

Int J Environ Res Public Health. 2021 Feb 21;18(4):2086. doi: 10.3390/ijerph18042086.

Abstract

BACKGROUND

The efficacy of artificial intelligence (AI)-driven automated medical-history-taking systems with AI-driven differential-diagnosis lists on physicians' diagnostic accuracy was shown. However, considering the negative effects of AI-driven differential-diagnosis lists such as omission (physicians reject a correct diagnosis suggested by AI) and commission (physicians accept an incorrect diagnosis suggested by AI) errors, the efficacy of AI-driven automated medical-history-taking systems without AI-driven differential-diagnosis lists on physicians' diagnostic accuracy should be evaluated.

OBJECTIVE

The present study was conducted to evaluate the efficacy of AI-driven automated medical-history-taking systems with or without AI-driven differential-diagnosis lists on physicians' diagnostic accuracy.

METHODS

This randomized controlled study was conducted in January 2021 and included 22 physicians working at a university hospital. Participants were required to read 16 clinical vignettes in which the AI-driven medical history of real patients generated up to three differential diagnoses per case. Participants were divided into two groups: with and without an AI-driven differential-diagnosis list.

RESULTS

There was no significant difference in diagnostic accuracy between the two groups (57.4% vs. 56.3%, respectively; = 0.91). Vignettes that included a correct diagnosis in the AI-generated list showed the greatest positive effect on physicians' diagnostic accuracy (adjusted odds ratio 7.68; 95% CI 4.68-12.58; < 0.001). In the group with AI-driven differential-diagnosis lists, 15.9% of diagnoses were omission errors and 14.8% were commission errors.

CONCLUSIONS

Physicians' diagnostic accuracy using AI-driven automated medical history did not differ between the groups with and without AI-driven differential-diagnosis lists.

摘要

背景

已经证明了人工智能(AI)驱动的自动化病历采集系统与 AI 驱动的鉴别诊断列表结合使用对医生诊断准确性的有效性。然而,考虑到 AI 驱动的鉴别诊断列表可能会产生漏诊(医生拒绝 AI 建议的正确诊断)和误诊(医生接受 AI 建议的错误诊断)等负面影响,因此需要评估没有 AI 驱动的鉴别诊断列表的 AI 驱动的自动化病历采集系统对医生诊断准确性的效果。

目的

本研究旨在评估具有或不具有 AI 驱动的鉴别诊断列表的 AI 驱动的自动化病历采集系统对医生诊断准确性的效果。

方法

这是一项 2021 年 1 月进行的随机对照研究,纳入了一家大学医院的 22 名医生。参与者需要阅读 16 个临床案例,其中每个案例的 AI 驱动的真实患者病历都会生成最多三个鉴别诊断。参与者被分为两组:有和没有 AI 驱动的鉴别诊断列表。

结果

两组的诊断准确性没有显著差异(分别为 57.4%和 56.3%, = 0.91)。AI 生成列表中包含正确诊断的案例对医生的诊断准确性有最大的积极影响(调整后的优势比 7.68;95%CI 4.68-12.58; < 0.001)。在有 AI 驱动的鉴别诊断列表的组中,15.9%的诊断为漏诊,14.8%为误诊。

结论

在有和没有 AI 驱动的鉴别诊断列表的组中,医生使用 AI 驱动的自动化病历的诊断准确性没有差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/391b/7924871/0e57106d622b/ijerph-18-02086-g001.jpg

相似文献

9
Can ChatGPT-4 evaluate whether a differential diagnosis list contains the correct diagnosis as accurately as a physician?
Diagnosis (Berl). 2024 Mar 12;11(3):321-324. doi: 10.1515/dx-2024-0027. eCollection 2024 Aug 1.

引用本文的文献

7
Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease?
Front Aging Neurosci. 2023 Apr 18;15:1094233. doi: 10.3389/fnagi.2023.1094233. eCollection 2023.
10
Clinical Decision Support Systems for Diagnosis in Primary Care: A Scoping Review.
Int J Environ Res Public Health. 2021 Aug 10;18(16):8435. doi: 10.3390/ijerph18168435.

本文引用的文献

2
US primary care in 2029: A Delphi survey on the impact of machine learning.
PLoS One. 2020 Oct 8;15(10):e0239947. doi: 10.1371/journal.pone.0239947. eCollection 2020.
4
Factors and impact of physicians' diagnostic errors in malpractice claims in Japan.
PLoS One. 2020 Aug 3;15(8):e0237145. doi: 10.1371/journal.pone.0237145. eCollection 2020.
5
Diagnosing, fast and slow.
Postgrad Med J. 2021 Feb;97(1144):103-109. doi: 10.1136/postgradmedj-2019-137412. Epub 2020 Jun 28.
6
Immunising' physicians against availability bias in diagnostic reasoning: a randomised controlled experiment.
BMJ Qual Saf. 2020 Jul;29(7):550-559. doi: 10.1136/bmjqs-2019-010079. Epub 2020 Jan 27.
7
A survey of outpatient Internal Medicine clinician perceptions of diagnostic error.
Diagnosis (Berl). 2020 May 26;7(2):107-114. doi: 10.1515/dx-2019-0070.
8
Symptom checkers versus doctors: A prospective, head-to-head comparison for cough.
Clin Respir J. 2020 Apr;14(4):413-415. doi: 10.1111/crj.13135. Epub 2020 Jan 4.
9
Human factors challenges for the safe use of artificial intelligence in patient care.
BMJ Health Care Inform. 2019 Nov;26(1). doi: 10.1136/bmjhci-2019-100081.
10
Prioritizing Patient Safety Efforts in Office Practice Settings.
J Patient Saf. 2019 Dec;15(4):e98-e101. doi: 10.1097/PTS.0000000000000652.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验