Kannathal N, Acharya U Rajendra, Lim C M, Sadasivan P K
Department of ECE, National University of Singapore, Singapore.
Comput Methods Programs Biomed. 2005 Oct;80(1):17-23. doi: 10.1016/j.cmpb.2005.06.005.
The Electroencephalogram (EEG) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer cannot directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. Chaotic measures like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H) and entropy are used to characterize the signal. Results indicate that these nonlinear measures are good discriminators of normal and epileptic EEG signals. These measures distinguish epileptic EEG and alcoholic from normal EEG with an accuracy of more than 90%. The dynamical behavior is less random for alcoholic and epileptic compared to normal. This indicates less of information processing in the brain due to the hyper-synchronization of the EEG. Hence, the application of nonlinear time series analysis to EEG signals offers insight into the dynamical nature and variability of the brain signals. As a pre-analysis step, the EEG data is tested for nonlinearity using surrogate data analysis and the results exhibited a significant difference in the correlation dimension measure of the actual data and the surrogate data.
脑电图(EEG)是一种代表性信号,包含有关大脑状况的信息。波形的形状可能包含有关大脑状态的有用信息。然而,人类观察者无法直接监测这些细微细节。此外,由于生物信号具有高度主观性,症状可能在时间尺度上随机出现。因此,使用计算机提取和分析的EEG信号参数在诊断中非常有用。诸如关联维数(CD)、最大李雅普诺夫指数(LLE)、赫斯特指数(H)和熵等混沌测度用于表征信号。结果表明,这些非线性测度是正常和癫痫EEG信号的良好判别指标。这些测度区分癫痫EEG和酒精性EEG与正常EEG的准确率超过90%。与正常情况相比,酒精性和癫痫性的动态行为随机性较小。这表明由于EEG的过度同步,大脑中的信息处理较少。因此,将非线性时间序列分析应用于EEG信号可以深入了解大脑信号的动态性质和变异性。作为预分析步骤,使用替代数据分析对EEG数据进行非线性测试,结果显示实际数据和替代数据的关联维数测度存在显著差异。