Suppr超能文献

通过质谱流式细胞术对卵巢癌微环境进行表型特征分析及肿瘤解离方法的影响

Phenotypic Characterization by Mass Cytometry of the Microenvironment in Ovarian Cancer and Impact of Tumor Dissociation Methods.

作者信息

Anandan Shamundeeswari, Thomsen Liv Cecilie V, Gullaksen Stein-Erik, Abdelaal Tamim, Kleinmanns Katrin, Skavland Jørn, Bredholt Geir, Gjertsen Bjørn Tore, McCormack Emmet, Bjørge Line

机构信息

Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.

Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway.

出版信息

Cancers (Basel). 2021 Feb 11;13(4):755. doi: 10.3390/cancers13040755.

Abstract

Improved molecular dissection of the tumor microenvironment (TME) holds promise for treating high-grade serous ovarian cancer (HGSOC), a gynecological malignancy with high mortality. Reliable disease-related biomarkers are scarce, but single-cell mapping of the TME could identify patient-specific prognostic differences. To avoid technical variation effects, however, tissue dissociation effects on single cells must be considered. We present a novel Cytometry by Time-of-Flight antibody panel for single-cell suspensions to identify individual TME profiles of HGSOC patients and evaluate the effects of dissociation methods on results. The panel was developed utilizing cell lines, healthy donor blood, and stem cells and was applied to HGSOC tissues dissociated by six methods. Data were analyzed using Cytobank and X-shift and illustrated by t-distributed stochastic neighbor embedding plots, heatmaps, and stacked bar and error plots. The panel distinguishes the main cellular subsets and subpopulations, enabling characterization of individual TME profiles. The dissociation method affected some immune ( = 1), stromal ( = 2), and tumor ( = 3) subsets, while functional marker expressions remained comparable. In conclusion, the panel can identify subsets of the HGSOC TME and can be used for in-depth profiling. This panel represents a promising profiling tool for HGSOC when tissue handling is considered.

摘要

对肿瘤微环境(TME)进行更精细的分子剖析有望用于治疗高级别浆液性卵巢癌(HGSOC),这是一种死亡率很高的妇科恶性肿瘤。可靠的疾病相关生物标志物稀缺,但TME的单细胞图谱可以识别患者特异性的预后差异。然而,为避免技术变异效应,必须考虑组织解离对单细胞的影响。我们提出了一种用于单细胞悬液的新型飞行时间流式细胞术抗体组合,以识别HGSOC患者的个体TME图谱,并评估解离方法对结果的影响。该组合利用细胞系、健康供体血液和干细胞开发,并应用于通过六种方法解离的HGSOC组织。使用Cytobank和X-shift分析数据,并通过t分布随机邻域嵌入图、热图、堆叠柱状图和误差图进行展示。该组合可区分主要细胞亚群和亚种群,从而能够对个体TME图谱进行表征。解离方法影响了一些免疫(=1)、基质(=2)和肿瘤(=3)亚群,而功能标志物表达仍具有可比性。总之,该组合可以识别HGSOC TME的亚群,并可用于深入分析。考虑到组织处理时,该组合是一种很有前景的HGSOC分析工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e47/7918057/064b2becffb4/cancers-13-00755-g001.jpg

相似文献

4
Circular RNA profiling reveals circRNA1656 as a novel biomarker in high grade serous ovarian cancer.
Biosci Trends. 2019 May 12;13(2):204-211. doi: 10.5582/bst.2019.01021. Epub 2019 Apr 24.
6
Prognostic features of the tumor microenvironment in high-grade serous ovarian cancer and dietary immunomodulation.
Life Sci. 2023 Nov 15;333:122178. doi: 10.1016/j.lfs.2023.122178. Epub 2023 Oct 14.
7
Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions.
Drug Resist Updat. 2016 Jan;24:55-69. doi: 10.1016/j.drup.2015.11.005. Epub 2015 Nov 26.
10
Multiparameter single-cell proteomic technologies give new insights into the biology of ovarian tumors.
Semin Immunopathol. 2023 Jan;45(1):43-59. doi: 10.1007/s00281-022-00979-9. Epub 2023 Jan 12.

引用本文的文献

1
State-of-the-art cytometry in the search of novel biomarkers in digestive cancers.
Front Oncol. 2024 May 29;14:1407580. doi: 10.3389/fonc.2024.1407580. eCollection 2024.
3
CyTOF for the Masses.
Front Immunol. 2022 Apr 14;13:815828. doi: 10.3389/fimmu.2022.815828. eCollection 2022.
5
Mass Cytometry for the Characterization of Individual Cell Types in Ovarian Solid Tumors.
Methods Mol Biol. 2022;2424:59-94. doi: 10.1007/978-1-0716-1956-8_4.

本文引用的文献

1
Agile workflow for interactive analysis of mass cytometry data.
Bioinformatics. 2021 Jun 9;37(9):1263-1268. doi: 10.1093/bioinformatics/btaa946.
2
The updated landscape of tumor microenvironment and drug repurposing.
Signal Transduct Target Ther. 2020 Aug 25;5(1):166. doi: 10.1038/s41392-020-00280-x.
3
Multiomic Analysis of Subtype Evolution and Heterogeneity in High-Grade Serous Ovarian Carcinoma.
Cancer Res. 2020 Oct 15;80(20):4335-4345. doi: 10.1158/0008-5472.CAN-20-0521. Epub 2020 Aug 3.
4
Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer.
Oncotarget. 2020 Jun 2;11(22):2092-2105. doi: 10.18632/oncotarget.27604.
6
How the ageing microenvironment influences tumour progression.
Nat Rev Cancer. 2020 Feb;20(2):89-106. doi: 10.1038/s41568-019-0222-9. Epub 2019 Dec 13.
7
Automated Data Cleanup for Mass Cytometry.
Cytometry A. 2020 Feb;97(2):184-198. doi: 10.1002/cyto.a.23926. Epub 2019 Nov 18.
8
Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials.
Front Oncol. 2019 May 17;9:415. doi: 10.3389/fonc.2019.00415. eCollection 2019.
10
Implementation of Mass Cytometry for Immunoprofiling of Patients with Solid Tumors.
J Immunol Res. 2019 Feb 11;2019:6705949. doi: 10.1155/2019/6705949. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验