Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Department of Pathology, University of Turku, Turku, Finland.
Bioinformatics. 2021 Jun 9;37(9):1263-1268. doi: 10.1093/bioinformatics/btaa946.
Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-cell variation and cell populations at a single-cell resolution. These large amounts of data, require dedicated, interactive tools for translating the data into knowledge.
We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture the immune cell sub-populations from peripheral blood and cellular compositions of unique immune- and cancer cell subpopulations in HGSOC tumor and ascites samples.
The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user guide and source code are available at https://bitbucket.org/anduril-dev/cyto.
Supplementary data are available at Bioinformatics online.
单细胞蛋白质组学技术,如质谱流式细胞术,使我们能够以单细胞分辨率对细胞间的变化和细胞群进行特征描述。这些大量的数据需要专用的交互式工具来将数据转化为知识。
我们提出了一种全面的、交互式的方法,称为 Cyto,用于简化大规模流式细胞术数据的分析。Cyto 是一个基于工作流程的开源解决方案,它可以自动化使用最先进的单细胞分析方法,并结合交互式可视化。我们通过将其应用于外周血和高级别浆液性卵巢癌 (HGSOC) 样本的质谱流式细胞术数据,展示了 Cyto 的实用性。我们的结果表明,Cyto 能够可靠地捕获外周血中的免疫细胞亚群,以及 HGSOC 肿瘤和腹水样本中独特的免疫和癌细胞亚群的细胞组成。
该方法可作为 Docker 容器在 https://hub.docker.com/r/anduril/cyto 上获得,用户指南和源代码可在 https://bitbucket.org/anduril-dev/cyto 上获得。
补充数据可在《生物信息学》在线获得。