Department of Information Convergence Engineering, Kyung Hee University, Yongin 17104, Korea.
Faculty of Engineering in Electricity and Computation, FIEC, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil EC090112, Ecuador.
Sensors (Basel). 2021 Feb 17;21(4):1404. doi: 10.3390/s21041404.
Recording human gestures from a wearable sensor produces valuable information to implement control gestures or in healthcare services. The wearable sensor is required to be small and easily worn. Advances in miniaturized sensor and materials research produces patchable inertial measurement units (IMUs). In this paper, a hand gesture recognition system using a single patchable six-axis IMU attached at the wrist via recurrent neural networks (RNN) is presented. The IMU comprises IC-based electronic components on a stretchable, adhesive substrate with serpentine-structured interconnections. The proposed patchable IMU with soft form-factors can be worn in close contact with the human body, comfortably adapting to skin deformations. Thus, signal distortion (i.e., motion artifacts) produced for vibration during the motion is minimized. Also, our patchable IMU has a wireless communication (i.e., Bluetooth) module to continuously send the sensed signals to any processing device. Our hand gesture recognition system was evaluated, attaching the proposed patchable six-axis IMU on the right wrist of five people to recognize three hand gestures using two models based on recurrent neural nets. The RNN-based models are trained and validated using a public database. The preliminary results show that our proposed patchable IMU have potential to continuously monitor people's motions in remote settings for applications in mobile health, human-computer interaction, and control gestures recognition.
从可穿戴传感器记录人类手势可以产生有价值的信息,用于实施控制手势或在医疗保健服务中使用。可穿戴传感器需要小巧且易于佩戴。微型化传感器和材料研究的进步产生了可粘贴的惯性测量单元 (IMU)。本文提出了一种使用单个可粘贴六轴 IMU 通过递归神经网络 (RNN) 附着在手腕上的手势识别系统。IMU 由基于 IC 的电子组件组成,位于具有蛇形结构互连的可拉伸、粘性基板上。具有柔软外形因素的提议的可粘贴 IMU 可以紧密贴合人体,舒适地适应皮肤变形。因此,运动过程中产生的振动引起的信号失真(即运动伪影)最小化。此外,我们的可粘贴 IMU 具有无线通信(即蓝牙)模块,可以将感测到的信号连续发送到任何处理设备。我们的手势识别系统进行了评估,将提议的可粘贴六轴 IMU 附着在五个人的右手腕上,使用基于递归神经网络的两个模型识别三个手势。基于 RNN 的模型使用公共数据库进行训练和验证。初步结果表明,我们提出的可粘贴 IMU 具有在远程环境中连续监测人们运动的潜力,可用于移动健康、人机交互和控制手势识别等应用。