Suppr超能文献

磁计数手部运动:无校准算法的验证及其在手卒中后真实世界手部使用阈假说测试中的应用。

Magnetically Counting Hand Movements: Validation of a Calibration-Free Algorithm and Application to Testing the Threshold Hypothesis of Real-World Hand Use after Stroke.

机构信息

John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil.

出版信息

Sensors (Basel). 2021 Feb 22;21(4):1502. doi: 10.3390/s21041502.

Abstract

There are few wearable sensors suitable for daily monitoring of wrist and finger movements for hand-related healthcare applications. Here, we describe the development and validation of a novel algorithm for magnetically counting hand movements. We implemented the algorithm on a wristband that senses magnetic field changes produced by movement of a magnetic ring worn on the finger (the "Manumeter"). The "HAND" (Hand Activity estimated by Nonlinear Detection) algorithm assigns a "HAND count" by thresholding the real-time change in magnetic field created by wrist and/or finger movement. We optimized thresholds to achieve a HAND count accuracy of ~85% without requiring subject-specific calibration. Then, we validated the algorithm in a dexterity-impaired population by showing that HAND counts strongly correlate with clinical assessments of upper extremity (UE) function after stroke. Finally, we used HAND counts to test a recent hypothesis in stroke rehabilitation that real-world UE hand use increases only for stroke survivors who achieve a threshold level of UE functional capability. For 29 stroke survivors, HAND counts measured at home did not increase until the participants' Box and Blocks Test scores exceeded ~50% normal. These results show that a threshold-based magnetometry approach can non-obtrusively quantify hand movements without calibration and also verify a key concept of real-world hand use after stroke.

摘要

适合用于手部相关医疗保健应用的日常监测手腕和手指运动的可穿戴传感器寥寥无几。在这里,我们描述了一种用于磁性计数手部运动的新型算法的开发和验证。我们在一个腕带(“Manumeter”)上实现了该算法,该腕带可感应戴在手指上的磁环运动产生的磁场变化。“HAND”(通过非线性检测估计的手部活动)算法通过阈值处理手腕和/或手指运动产生的实时磁场变化来分配“HAND 计数”。我们优化了阈值,以实现无需针对特定个体进行校准的HAND 计数准确率约为 85%。然后,我们通过显示 HAND 计数与中风后上肢(UE)功能的临床评估高度相关,在运动障碍人群中验证了该算法。最后,我们使用 HAND 计数来测试中风康复中的一个新假设,即只有当 UE 功能能力达到阈值水平的中风幸存者,实际 UE 手部使用才会增加。对于 29 名中风幸存者,参与者的“Box and Blocks Test”评分超过正常水平的 50%之前,他们在家中测量的 HAND 计数并未增加。这些结果表明,基于阈值的磁力计方法可以在无需校准的情况下非侵入性地量化手部运动,并且还验证了中风后实际手部使用的一个关键概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0307/7926537/841f54415c82/sensors-21-01502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验