Ghodake Gajanan S, Shinde Surendra K, Saratale Ganesh D, Saratale Rijuta G, Kim Min, Jee Seung-Cheol, Kim Dae-Young, Sung Jung-Suk, Kadam Avinash A
Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea.
Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea.
Polymers (Basel). 2021 Feb 15;13(4):581. doi: 10.3390/polym13040581.
The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (FeO), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-FeO-CTNs (α-Cellulose-FeO-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-FeO-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-FeO-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-FeO-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-FeO-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-FeO-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-FeO-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.
利用废纸生物质提取重要的α-纤维素生物聚合物,并对提取的α-纤维素进行改性以用于酶固定化,对绿色循环生物经济可能极为重要。因此,在本研究中,α-纤维素纤维被超磁化(FeO),接枝壳聚糖(CTNs),并进行硫醇(-SH)改性以固定漆酶。通过高分辨率透射电子显微镜(HR-TEM)、HR-TEM能量色散X射线光谱(HR-TEM-EDS)、X射线衍射(XRD)、振动样品磁强计(VSM)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)分析对所制备的材料进行了表征。固定在α-纤维素-FeO-CTNs(α-纤维素-FeO-CTNs-漆酶)上的漆酶具有显著的活性回收率(99.16%)和漆酶负载潜力(169.36 mg/g)。α-纤维素-FeO-CTNs-漆酶在温度、pH和储存时间方面表现出优异的稳定性。α-纤维素-FeO-CTNs-漆酶在重复循环中应用时,显示出10个循环的活性保留具有显著的一致性。在第10个循环后,α-纤维素-FeO-CTNs具有80.65%的相对活性。此外,α-纤维素-FeO-CTNs-漆酶对药物污染物磺胺甲恶唑(SMX)表现出优异的降解效果。发现α-纤维素-FeO-CTNs-漆酶对SMX的降解在孵育时间(20 h)、pH(3)、温度(30°C)和振荡条件(200 rpm)下最佳。最后,α-纤维素-FeO-CTNs-漆酶对SMX进行了重复降解。因此,本研究提出了一种用于酶固定化应用的新型、废物衍生、高性能和超磁性纳米复合材料。