Kadam Avinash A, Shinde Surendra K, Ghodake Gajanan S, Saratale Ganesh D, Saratale Rijuta G, Sharma Bharat, Hyun Seunghun, Sung Jung-Suk
Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea.
Polymers (Basel). 2020 Sep 27;12(10):2221. doi: 10.3390/polym12102221.
A surface-engineered nano-support for enzyme laccase-immobilization was designed by grafting the surface of halloysite nanotubes (HNTs) with FeO nanoparticles and chitosan. Herein, HNTs were magnetized (HNTs-M) by a cost-effective reduction-precipitation method. The synthesized HNTs-M were grafted with 0.25%, 0.5%, 1%, and 2% chitosan (HNTs-M-chitosan), respectively. Synthesized HNTs-M-chitosan (0.25%), HNTs-M-chitosan (0.5%), HNTs-M-chitosan (1%) and HNTs-M-chitosan (2%) were linked with glutaraldehyde (GTA) for laccase immobilization. Among these formulations, HNTs-M-chitosan (1%) exhibited the highest laccase immobilization with 95.13% activity recovery and 100.12 mg/g of laccase loading. The optimized material was characterized thoroughly by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The immobilized laccase (HNTs-M-chitosan (1%)-GTA-) exhibited higher pH, temperature, and storage stabilities. The HNTs-M-chitosan (1%)-GTA- possesses excellent reusability capabilities. At the end of 10 cycles of the reusability experiment, HNTs-M-chitosan (1%)-GTA- retained 59.88% of its initial activity. The immobilized laccase was utilized for redox-mediated degradation of sulfamethoxazole (SMX), resulting in 41%, 59%, and 62% degradation of SMX in the presence of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), guaiacol (GUA), and syringaldehyde (SA), respectively. Repeated SMX degradation (57.10% after the sixth cycle) confirmed the potential of HNTs-M-chitosan (1%)-GTA- for environmental pollutant degradation. Thus, we successfully designed chitosan-based, rapidly separable super-magnetic nanotubes for efficacious enhancement of laccase biocatalysis, which can be applied as nano-supports for other enzymes.
通过用FeO纳米颗粒和壳聚糖接枝埃洛石纳米管(HNTs)的表面,设计了一种用于固定漆酶的表面工程化纳米载体。在此,通过一种经济高效的还原沉淀法将HNTs磁化(HNTs-M)。将合成的HNTs-M分别与0.25%、0.5%、1%和2%的壳聚糖接枝(HNTs-M-壳聚糖)。合成的HNTs-M-壳聚糖(0.25%)、HNTs-M-壳聚糖(0.5%)、HNTs-M-壳聚糖(1%)和HNTs-M-壳聚糖(2%)与戊二醛(GTA)连接用于漆酶固定化。在这些制剂中,HNTs-M-壳聚糖(1%)表现出最高的漆酶固定化率,活性回收率为95.13%,漆酶负载量为100.12 mg/g。通过扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HR-TEM)、X射线粉末衍射(XRD)、热重分析(TGA)和振动样品磁强计(VSM)分析对优化后的材料进行了全面表征。固定化漆酶(HNTs-M-壳聚糖(1%)-GTA-)表现出更高的pH稳定性、温度稳定性和储存稳定性。HNTs-M-壳聚糖(1%)-GTA-具有优异的可重复使用性。在可重复使用性实验的10个循环结束时,HNTs-M-壳聚糖(1%)-GTA-保留了其初始活性的59.88%。固定化漆酶用于氧化还原介导的磺胺甲恶唑(SMX)降解,在2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)、愈创木酚(GUA)和丁香醛(SA)存在下,SMX的降解率分别为41%、59%和62%。重复的SMX降解(第六个循环后为57.10%)证实了HNTs-M-壳聚糖(1%)-GTA-在环境污染物降解方面的潜力。因此,我们成功设计了基于壳聚糖的、可快速分离的超磁性纳米管,用于有效增强漆酶生物催化作用,其可作为其他酶的纳米载体。