文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

退行性颈椎脊髓病患者的脊髓形态学;使用机器视觉工具评估关键形态学特征

Spinal Cord Morphology in Degenerative Cervical Myelopathy Patients; Assessing Key Morphological Characteristics Using Machine Vision Tools.

作者信息

Ost Kalum, Jacobs W Bradley, Evaniew Nathan, Cohen-Adad Julien, Anderson David, Cadotte David W

机构信息

Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.

Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

J Clin Med. 2021 Feb 23;10(4):892. doi: 10.3390/jcm10040892.


DOI:10.3390/jcm10040892
PMID:33672259
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7926672/
Abstract

Despite Degenerative Cervical Myelopathy (DCM) being the most common form of spinal cord injury, effective methods to evaluate patients for its presence and severity are only starting to appear. Evaluation of patient images, while fast, is often unreliable; the pathology of DCM is complex, and clinicians often have difficulty predicting patient prognosis. Automated tools, such as the Spinal Cord Toolbox (SCT), show promise, but remain in the early stages of development. To evaluate the current state of an SCT automated process, we applied it to MR imaging records from 328 DCM patients, using the modified Japanese Orthopedic Associate scale as a measure of DCM severity. We found that the metrics extracted from these automated methods are insufficient to reliably predict disease severity. Such automated processes showed potential, however, by highlighting trends and barriers which future analyses could, with time, overcome. This, paired with findings from other studies with similar processes, suggests that additional non-imaging metrics could be added to achieve diagnostically relevant predictions. Although modeling techniques such as these are still in their infancy, future models of DCM severity could greatly improve automated clinical diagnosis, communications with patients, and patient outcomes.

摘要

尽管退行性颈椎脊髓病(DCM)是脊髓损伤最常见的形式,但评估患者是否存在该病及其严重程度的有效方法才刚刚开始出现。对患者图像的评估虽然快速,但往往不可靠;DCM的病理情况复杂,临床医生常常难以预测患者的预后。诸如脊髓工具箱(SCT)等自动化工具显示出了前景,但仍处于开发的早期阶段。为了评估SCT自动化流程的当前状态,我们将其应用于328例DCM患者的磁共振成像记录,使用改良的日本骨科协会量表作为DCM严重程度的衡量标准。我们发现,从这些自动化方法中提取的指标不足以可靠地预测疾病严重程度。然而,通过突出未来分析随着时间推移可以克服的趋势和障碍,此类自动化流程显示出了潜力。这与其他采用类似流程的研究结果相结合,表明可以添加额外的非成像指标来实现与诊断相关的预测。尽管此类建模技术仍处于起步阶段,但未来的DCM严重程度模型可能会极大地改善临床自动化诊断、与患者的沟通以及患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/597454063896/jcm-10-00892-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/b84eda68ae8e/jcm-10-00892-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/03eea2cc585f/jcm-10-00892-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/55c2fa631570/jcm-10-00892-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/9ed1ff055ce1/jcm-10-00892-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/16493be6799c/jcm-10-00892-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/5e39ff825cfe/jcm-10-00892-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/597454063896/jcm-10-00892-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/b84eda68ae8e/jcm-10-00892-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/03eea2cc585f/jcm-10-00892-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/55c2fa631570/jcm-10-00892-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/9ed1ff055ce1/jcm-10-00892-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/16493be6799c/jcm-10-00892-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/5e39ff825cfe/jcm-10-00892-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f26/7926672/597454063896/jcm-10-00892-g007.jpg

相似文献

[1]
Spinal Cord Morphology in Degenerative Cervical Myelopathy Patients; Assessing Key Morphological Characteristics Using Machine Vision Tools.

J Clin Med. 2021-2-23

[2]
Cervical spinal cord morphometrics in degenerative cervical myelopathy: quantification using semi-automated normalized technique and correlation with neurological dysfunctions.

Spine J. 2024-11

[3]
Machine Learning and Symptom Patterns in Degenerative Cervical Myelopathy: Web-Based Survey Study.

JMIR Form Res. 2024-1-25

[4]
Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy.

PLoS One. 2019-4-4

[5]
Evaluation of microstructural changes in spinal cord of patients with degenerative cervical myelopathy by diffusion kurtosis imaging and investigate the correlation with JOA score.

BMC Neurol. 2020-5-13

[6]
Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques.

Neurosurg Focus. 2016-6

[7]
Degenerative Cervical Myelopathy: Insights into Its Pathobiology and Molecular Mechanisms.

J Clin Med. 2021-3-15

[8]
The significance of metabolic disease in degenerative cervical myelopathy: a systematic review.

Front Neurol. 2024-2-5

[9]
Degenerative Cervical Myelopathy: A Clinical Review.

Yale J Biol Med. 2018-3-28

[10]
Congenital Cervical Spine Stenosis in a Multicenter Global Cohort of Patients With Degenerative Cervical Myelopathy: An Ambispective Report Based on a Magnetic Resonance Imaging Diagnostic Criterion.

Neurosurgery. 2018-9-1

引用本文的文献

[1]
Quantitative assessment of asymptomatic spinal cord compression using MRI: a multi-center study.

Geroscience. 2025-8-15

[2]
A Systematic Review of Current Terminology for Conditions Preceding Degenerative Cervical Myelopathy: Evidence Synthesis to Inform an AO Spine Expert Opinion Statement.

Global Spine J. 2025-4-30

[3]
A natural history study to track brain and spinal cord changes in individuals with Friedreich's ataxia: TRACK-FA study protocol.

PLoS One. 2022

[4]
Degenerative Cervical Myelopathy and Spinal Cord Injury: Introduction to the Special Issue.

J Clin Med. 2022-7-22

[5]
Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox.

Quant Imaging Med Surg. 2022-4

[6]
A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time.

Global Spine J. 2022-2

本文引用的文献

[1]
Array programming with NumPy.

Nature. 2020-9-16

[2]
Clinical predictors of achieving the minimal clinically important difference after surgery for cervical spondylotic myelopathy: an external validation study from the Canadian Spine Outcomes and Research Network.

J Neurosurg Spine. 2020-4-10

[3]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[4]
Deep flexor sarcopenia as a predictor of poor functional outcome after anterior cervical discectomy in patients with myelopathy.

Acta Neurochir (Wien). 2019-6-8

[5]
Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.

Neuroimage. 2018-10-6

[6]
Monitoring for myelopathic progression with multiparametric quantitative MRI.

PLoS One. 2018-4-17

[7]
Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study.

BMJ Open. 2018-4-13

[8]
Degenerative Cervical Myelopathy: A Clinical Review.

Yale J Biol Med. 2018-3-28

[9]
Degenerative cervical myelopathy.

BMJ. 2018-2-22

[10]
Outcomes of Surgical Decompression in Patients With Very Severe Degenerative Cervical Myelopathy.

Spine (Phila Pa 1976). 2018-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索