Suppr超能文献

HRDepthNet:基于深度图像的无标记人体关节跟踪

HRDepthNet: Depth Image-Based Marker-Less Tracking of Body Joints.

机构信息

Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany.

出版信息

Sensors (Basel). 2021 Feb 14;21(4):1356. doi: 10.3390/s21041356.

Abstract

With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)-a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test-an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO's evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm (-axis), 2.342 cm (-axis) and 2.4 cm (-axis).

摘要

现已有可用于彩色图像中关节位置检测的方法,如 HRNet 和 OpenPose,尽管深度图像相对于彩色图像具有鲁棒性、对光变化不敏感、颜色和纹理不变等优势,但对深度图像的相应方法的考虑却很有限。相应地,我们引入了 High-Resolution Depth Net(HRDepthNet)——一种用于在纯深度图像中检测人体关节(身体、头部以及上下肢)的机器学习驱动方法。HRDepthNet 对原始 HRNet 进行了深度图像的再训练。因此,创建了一个包含使用进行计时起立行走测试(一种既定的老年评估)的对象记录的深度(和 RGB)图像的数据集。这些图像经过手动标注 RGB 图像。使用该数据集进行了训练和评估。为了进行准确性评估,通过 COCO 的评估指标评估了身体关节的检测,并表明基于深度图像的模型的结果优于经过训练并应用于相应 RGB 图像的 HRNet。对位置误差的进一步评估显示,中位数偏差为 1.619 厘米(-轴)、2.342 厘米(-轴)和 2.4 厘米(-轴)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5484/7918542/4c059392efcd/sensors-21-01356-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验