Suppr超能文献

基于深度学习模型的无标记三维运动捕捉智能手机应用的开发。

Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model.

机构信息

Digital Standard Co., Ltd., Osaka 536-0013, Japan.

Department of Neurosurgery, Shiga University of Medical Science, Otsu 520-2192, Japan.

出版信息

Sensors (Basel). 2022 Jul 14;22(14):5282. doi: 10.3390/s22145282.

Abstract

To quantitatively assess pathological gait, we developed a novel smartphone application for full-body human motion tracking in real time from markerless video-based images using a smartphone monocular camera and deep learning. As training data for deep learning, the original three-dimensional (3D) dataset comprising more than 1 million captured images from the 3D motion of 90 humanoid characters and the two-dimensional dataset of COCO 2017 were prepared. The 3D heatmap offset data consisting of 28 × 28 × 28 blocks with three red-green-blue colors at the 24 key points of the entire body motion were learned using the convolutional neural network, modified ResNet34. At each key point, the hottest spot deviating from the center of the cell was learned using the tanh function. Our new iOS application could detect the relative tri-axial coordinates of the 24 whole-body key points centered on the navel in real time without any markers for motion capture. By using the relative coordinates, the 3D angles of the neck, lumbar, bilateral hip, knee, and ankle joints were estimated. Any human motion could be quantitatively and easily assessed using a new smartphone application named Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) without any body markers or multipoint cameras.

摘要

为了定量评估病理性步态,我们开发了一种新的智能手机应用程序,用于使用智能手机单目相机和深度学习从无标记视频图像实时跟踪全身人体运动。作为深度学习的训练数据,准备了包含超过 100 万张从 90 个人形角色的 3D 运动中捕获的图像的原始 3D 数据集和 COCO 2017 的二维数据集。使用卷积神经网络(修改后的 ResNet34)学习了由 28×28×28 个块组成的 3D 热图偏移数据,这些块具有整个身体运动的 24 个关键点的三种颜色的红、绿、蓝。在每个关键点,使用 tanh 函数学习偏离单元格中心的热点。我们的新 iOS 应用程序可以实时检测以肚脐为中心的 24 个全身关键点的相对三轴坐标,而无需任何运动捕捉标记。通过使用相对坐标,可以估计颈部、腰部、双侧髋部、膝部和踝关节的 3D 角度。任何人类运动都可以使用名为 Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) 的新智能手机应用程序进行定量和轻松评估,而无需任何身体标记或多点相机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8063/9322512/83878e70abe8/sensors-22-05282-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验