Wang Ziqi, Calzavarini Enrico, Sun Chao, Toschi Federico
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, China.
Unité de Mécanique de Lille-J. Boussinesq, Unité Labellisée de Recherche 7512, Université Lille, F-59000 Lille, France.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2012870118.
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularities of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in the presence of turbulence. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front and stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occur under different thermal and geometrical conditions.
水体中与凝固或融化相关的对流在塑造地球物理景观方面起着重要作用。特别是在全球气候变暖的背景下,准确量化水体环境与结冰或融化过程之间的动态相互作用至关重要。以往的研究揭示了结冰过程的复杂性,但往往忽略了水最显著的特性之一——密度异常,以及在湍流存在的情况下诱导分层以复杂方式相互作用和耦合。通过结合实验、数值模拟和理论建模,我们研究了淡水的凝固过程,充分考虑了相变、水的密度异常以及冰和水相的实际物理性质,我们证明这些对于正确预测不同的定性和定量行为至关重要。随着热驱动力的增加,我们识别出四种不同的流动动力学状态,其中冰前沿与稳定和不稳定分层水层之间发生不同程度的耦合。尽管冰前沿与流体运动之间存在复杂的相互作用,但值得注意的是,理论模型能够很好地捕捉平均冰厚度和生长速率。研究表明,热驱动力对全球结冰过程的时间演化有重大影响,在当前参数范围内,结冰过程可能从几天变化到几小时。我们的模型可以应用于在不同热条件和几何条件下发生结冰动力学的一般情况。