Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, 55812, USA.
Fluids Barriers CNS. 2021 Mar 6;18(1):10. doi: 10.1186/s12987-021-00245-4.
Failure to clear Aβ from the brain is partly responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood-brain barrier is the efflux transporter P-glycoprotein (P-gp). In AD, P-gp levels are reduced, which contributes to impaired Aβ brain clearance. However, the mechanism responsible for decreased P-gp levels is poorly understood and there are no strategies available to protect P-gp. We previously demonstrated in isolated brain capillaries ex vivo that human Aβ40 (hAβ40) triggers P-gp degradation by activating the ubiquitin-proteasome pathway. In this pathway, hAβ40 initiates P-gp ubiquitination, leading to internalization and proteasomal degradation of P-gp, which then results in decreased P-gp protein expression and transport activity levels. Here, we extend this line of research and present results from an in vivo study using a transgenic mouse model of AD (human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576).
In our study, hAPP mice were treated with vehicle, nocodazole (NCZ, microtubule inhibitor to block P-gp internalization), or a combination of NCZ and the P-gp inhibitor cyclosporin A (CSA). We determined P-gp protein expression and transport activity levels in isolated mouse brain capillaries and Aβ levels in plasma and brain tissue.
Treating hAPP mice with 5 mg/kg NCZ for 14 days increased P-gp levels to levels found in WT mice. Consistent with this, P-gp-mediated hAβ42 transport in brain capillaries was increased in NCZ-treated hAPP mice compared to untreated hAPP mice. Importantly, NCZ treatment significantly lowered hAβ40 and hAβ42 brain levels in hAPP mice, whereas hAβ40 and hAβ42 levels in plasma remained unchanged.
These findings provide in vivo evidence that microtubule inhibition maintains P-gp protein expression and transport activity levels, which in turn helps to lower hAβ brain levels in hAPP mice. Thus, protecting P-gp at the blood-brain barrier may provide a novel therapeutic strategy for AD and other Aβ-based pathologies.
阿尔茨海默病(AD)患者大脑中 Aβ 清除失败部分是导致 Aβ 脑内蓄积的原因。血脑屏障中清除 Aβ 的关键蛋白是外排转运体 P-糖蛋白(P-gp)。在 AD 中,P-gp 水平降低,导致 Aβ 脑内清除受损。然而,导致 P-gp 水平降低的机制尚不清楚,也没有可用的策略来保护 P-gp。我们之前在离体脑毛细血管中证明,人 Aβ40(hAβ40)通过激活泛素蛋白酶体途径触发 P-gp 降解。在该途径中,hAβ40 启动 P-gp 泛素化,导致 P-gp 内化和蛋白酶体降解,从而导致 P-gp 蛋白表达和转运活性水平降低。在这里,我们扩展了这一研究,并展示了使用 AD 转基因小鼠模型(人淀粉样前体蛋白(hAPP)过表达小鼠;Tg2576)进行的体内研究结果。
在我们的研究中,用载体、诺考达唑(NCZ,微管抑制剂以阻止 P-gp 内化)或 NCZ 和 P-gp 抑制剂环孢素 A(CSA)的组合处理 hAPP 小鼠。我们测定了分离的小鼠脑毛细血管中的 P-gp 蛋白表达和转运活性水平以及血浆和脑组织中的 Aβ 水平。
用 5mg/kg NCZ 处理 14 天可增加 hAPP 小鼠的 P-gp 水平至 WT 小鼠的水平。与此一致,与未经处理的 hAPP 小鼠相比,NCZ 处理的 hAPP 小鼠脑毛细血管中 P-gp 介导的 hAβ42 转运增加。重要的是,NCZ 处理显著降低了 hAPP 小鼠的 hAβ40 和 hAβ42 脑水平,而 hAβ40 和 hAβ42 血浆水平保持不变。
这些发现提供了体内证据,表明微管抑制维持了 P-gp 蛋白表达和转运活性水平,从而有助于降低 hAPP 小鼠的 hAβ 脑水平。因此,保护血脑屏障中的 P-gp 可能为 AD 和其他基于 Aβ 的病理提供一种新的治疗策略。