Suppr超能文献

心脏转化领域表明,微肽是参与心肌细胞肥大的新角色。

The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy.

机构信息

Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China.

Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

Mol Ther. 2021 Jul 7;29(7):2253-2267. doi: 10.1016/j.ymthe.2021.03.004. Epub 2021 Mar 5.

Abstract

Hypertrophic growth of cardiomyocytes is one of the major compensatory responses in the heart after physiological or pathological stimulation. Protein synthesis enhancement, which is mediated by the translation of messenger RNAs, is one of the main features of cardiomyocyte hypertrophy. Although the transcriptome shift caused by cardiac hypertrophy induced by different stimuli has been extensively investigated, translatome dynamics in this cellular process has been less studied. Here, we generated a nucleotide-resolution translatome as well as transcriptome data from isolated primary cardiomyocytes undergoing hypertrophy. More than 10,000 open reading frames (ORFs) were detected from the deep sequencing of ribosome-protected fragments (Ribo-seq), which orchestrated the shift of the translatome in hypertrophied cardiomyocytes. Our data suggest that rather than increase the translational rate of ribosomes, the increased efficiency of protein synthesis in cardiomyocyte hypertrophy was attributable to an increased quantity of ribosomes. In addition, more than 100 uncharacterized short ORFs (sORFs) were detected in long noncoding RNA genes from Ribo-seq with potential of micropeptide coding. In a random test of 15 candidates, the coding potential of 11 sORFs was experimentally supported. Three micropeptides were identified to regulate cardiomyocyte hypertrophy by modulating the activities of oxidative phosphorylation, the calcium signaling pathway, and the mitogen-activated protein kinase (MAPK) pathway. Our study provides a genome-wide overview of the translational controls behind cardiomyocyte hypertrophy and demonstrates an unrecognized role of micropeptides in cardiomyocyte biology.

摘要

心肌细胞的肥厚生长是心脏在生理或病理刺激后主要的代偿反应之一。蛋白质合成的增强是心肌肥厚的主要特征之一,它是通过信使 RNA 的翻译来介导的。虽然不同刺激引起的心脏肥厚所导致的转录组变化已经得到了广泛的研究,但这个细胞过程中的翻译组动态研究较少。在这里,我们从经历肥厚的分离原代心肌细胞中生成了核苷酸分辨率的翻译组和转录组数据。核糖体保护片段(Ribo-seq)的深度测序检测到了超过 10000 个开放阅读框(ORFs),这些 ORFs 协调了肥厚心肌细胞中转录组的变化。我们的数据表明,心肌肥厚中蛋白质合成效率的提高不是通过增加核糖体的翻译速率,而是归因于核糖体数量的增加。此外,从 Ribo-seq 中的长非编码 RNA 基因中检测到超过 100 个未被表征的短开放阅读框(sORFs),这些 sORFs 具有微肽编码的潜力。在对 15 个候选者的随机测试中,有 11 个 sORFs 的编码潜力得到了实验支持。三个微肽被鉴定为通过调节氧化磷酸化、钙信号通路和丝裂原激活蛋白激酶(MAPK)通路来调节心肌肥厚。我们的研究提供了心肌肥厚背后翻译控制的全基因组概述,并证明了微肽在心肌生物学中的未被认识的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ed/8261087/504623ed109f/fx1.jpg

相似文献

1
The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy.
Mol Ther. 2021 Jul 7;29(7):2253-2267. doi: 10.1016/j.ymthe.2021.03.004. Epub 2021 Mar 5.
3
The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy.
Cardiovasc Res. 2016 Jul 1;111(1):56-65. doi: 10.1093/cvr/cvw078. Epub 2016 Apr 15.
4
Monitoring Cell-Type-Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress.
Circ Res. 2019 Aug 2;125(4):431-448. doi: 10.1161/CIRCRESAHA.119.314817. Epub 2019 Jul 9.
5
Transcriptional and translational landscape fine-tune genome annotation and explores translation control in cotton.
J Adv Res. 2024 Apr;58:13-30. doi: 10.1016/j.jare.2023.05.004. Epub 2023 May 18.
6
Dopamine D2 receptor stimulation inhibits angiotensin II-induced hypertrophy in cultured neonatal rat ventricular myocytes.
Clin Exp Pharmacol Physiol. 2009 Mar;36(3):312-8. doi: 10.1111/j.1440-1681.2008.05064.x. Epub 2008 Oct 15.
7
Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling.
Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1421-1427. doi: 10.1016/j.bbadis.2019.02.014. Epub 2019 Feb 19.
9
The long noncoding RNA CARDINAL attenuates cardiac hypertrophy by modulating protein translation.
J Clin Invest. 2024 May 14;134(13):e169112. doi: 10.1172/JCI169112.
10
Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1.
Biochem Biophys Res Commun. 2004 Sep 10;322(1):310-9. doi: 10.1016/j.bbrc.2004.07.119.

引用本文的文献

2
Investigating the role of long non-coding RNA in hypertrophic cardiomyopathy.
bioRxiv. 2025 Jul 31:2025.07.26.666851. doi: 10.1101/2025.07.26.666851.
4
Emerging Technologies and Future Directions in Interorgan Crosstalk Cardiometabolic Research.
Circ Res. 2025 May 23;136(11):1494-1506. doi: 10.1161/CIRCRESAHA.125.325515. Epub 2025 May 22.
5
Asb10 accelerates pathological cardiac remodeling by stabilizing HSP70.
Cell Death Dis. 2025 May 22;16(1):409. doi: 10.1038/s41419-025-07735-5.
6
A cardiac fibroblast-enriched micropeptide regulates inflammation in ischemia/reperfusion injury.
JCI Insight. 2025 Mar 20;10(9). doi: 10.1172/jci.insight.187848. eCollection 2025 May 8.
7
Cardiomyocyte regeneration after infarction: changes, opportunities and challenges.
Mol Cell Biochem. 2025 Mar 17. doi: 10.1007/s11010-025-05251-w.
8
Translational regulation of SND1 governs endothelial homeostasis during stress.
J Clin Invest. 2025 Feb 3;135(3):e168730. doi: 10.1172/JCI168730.
10
Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications.
Cell Death Discov. 2024 Oct 23;10(1):450. doi: 10.1038/s41420-024-02175-0.

本文引用的文献

1
Single SERCA2a Therapy Ameliorated Dilated Cardiomyopathy for 18 Months in a Mouse Model of Duchenne Muscular Dystrophy.
Mol Ther. 2020 Mar 4;28(3):845-854. doi: 10.1016/j.ymthe.2019.12.011. Epub 2020 Jan 10.
2
ncRNA-Encoded Peptides or Proteins and Cancer.
Mol Ther. 2019 Oct 2;27(10):1718-1725. doi: 10.1016/j.ymthe.2019.09.001. Epub 2019 Sep 6.
3
Monitoring Cell-Type-Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress.
Circ Res. 2019 Aug 2;125(4):431-448. doi: 10.1161/CIRCRESAHA.119.314817. Epub 2019 Jul 9.
4
Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins.
Circulation. 2019 Sep 10;140(11):937-951. doi: 10.1161/CIRCULATIONAHA.119.039596. Epub 2019 Jul 9.
5
The lncRNA / locus orchestrates heart development through regulation of precise expression of .
Development. 2019 Jul 4;146(13):dev176198. doi: 10.1242/dev.176198.
6
The Translational Landscape of the Human Heart.
Cell. 2019 Jun 27;178(1):242-260.e29. doi: 10.1016/j.cell.2019.05.010. Epub 2019 May 30.
7
Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN.
J Clin Invest. 2019 Mar 1;129(3):1115-1128. doi: 10.1172/JCI98230. Epub 2019 Feb 4.
8
Micropeptide.
PLoS Genet. 2018 Dec 13;14(12):e1007764. doi: 10.1371/journal.pgen.1007764. eCollection 2018 Dec.
10
Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling.
Nat Biotechnol. 2018 Sep;36(8):746-757. doi: 10.1038/nbt.4183. Epub 2018 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验