The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia; The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, 4072, Australia.
The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia.
Curr Opin Cell Biol. 2021 Aug;71:7-14. doi: 10.1016/j.ceb.2021.01.009. Epub 2021 Mar 4.
Caveolae are abundant plasma membrane pits formed by the coordinated action of peripheral and integral membrane proteins and membrane lipids. Here, we discuss recent studies that are starting to provide a glimpse of how filamentous cavin proteins, membrane-embedded caveolin proteins, and specific plasma membrane lipids are brought together to make the unique caveola surface domain. Protein assembly involves multiple low-affinity interactions that are dependent on 'fuzzy' charge-dependent interactions mediated in part by disordered cavin and caveolin domains. We propose that cavins help generate a lipid domain conducive to full insertion of caveolin into the bilayer to promote caveola formation. The synergistic assembly of these dynamic protein complexes supports the formation of a metastable membrane domain that can be readily disassembled both in response to cellular stress and during endocytic trafficking. We present a mechanistic model for generation of caveolae based on these new insights.
小窝是由外周膜蛋白和整合膜蛋白以及膜脂共同协调作用形成的丰富的质膜凹陷。在这里,我们讨论了最近的研究,这些研究开始揭示丝状 cavin 蛋白、膜嵌入的 caveolin 蛋白和特定的质膜脂质是如何聚集在一起形成独特的小窝表面结构域的。蛋白组装涉及多个低亲和力的相互作用,这些相互作用依赖于部分由无规卷曲的 cavin 和 caveolin 结构域介导的“模糊”电荷依赖相互作用。我们提出 cavin 有助于生成有利于 caveolin 完全插入双层膜以促进小窝形成的脂质结构域。这些动态蛋白复合物的协同组装支持形成一种亚稳态的膜结构域,该结构域可以在细胞应激和内吞运输过程中迅速解组装。我们根据这些新的见解提出了一个用于生成小窝的机制模型。