Crawford-Kahrl Peter, Cummins Bree, Gedeon Tomas
Mathematical Sciences, Montana State University, Bozeman, MT 59717.
SIAM J Appl Dyn Syst. 2019;18(1):418-457. doi: 10.1137/18m1163610. Epub 2019 Feb 28.
Modeling the dynamics of biological networks introduces many challenges, among them the lack of first principle models, the size of the networks, and difficulties with parameterization. Discrete time Boolean networks and related continuous time switching systems provide a computationally accessible way to translate the structure of the network to predictions about the dynamics. Recent work has shown that the parameterized dynamics of switching systems can be captured by a combinatorial object, called a Dynamic Signatures Generated by Regulatory Networks (DSGRN) database, that consists of a parameter graph characterizing a finite parameter space decomposition, whose nodes are assigned a Morse graph that captures global dynamics for all corresponding parameters. We show that for a given network there is a way to associate the same type of object by considering a continuous time ODE system with a continuous right-hand side, which we call an L-system. The main goal of this paper is to compare the two DSGRN databases for the same network. Since the L-systems can be thought of as perturbations (not necessarily small) of the switching systems, our results address the correspondence between global parameterized dynamics of switching systems and their perturbations. We show that, at corresponding parameters, there is an order preserving map from the Morse graph of the switching system to that of the L-system that is surjective on the set of attractors and bijective on the set of fixed-point attractors. We provide important examples showing why this correspondence cannot be strengthened.
对生物网络的动力学进行建模会带来许多挑战,其中包括缺乏第一原理模型、网络规模以及参数化方面的困难。离散时间布尔网络和相关的连续时间切换系统提供了一种计算上可行的方法,将网络结构转化为关于动力学的预测。最近的工作表明,切换系统的参数化动力学可以由一个组合对象来捕获,这个组合对象称为由调控网络生成的动态签名(DSGRN)数据库,它由一个表征有限参数空间分解的参数图组成,其节点被赋予一个莫尔斯图,该莫尔斯图捕获了所有相应参数的全局动力学。我们表明,对于给定的网络,可以通过考虑一个具有连续右侧的连续时间常微分方程系统(我们称之为L系统)来关联相同类型的对象。本文的主要目标是比较同一网络的两个DSGRN数据库。由于L系统可以被视为切换系统的扰动(不一定很小),我们的结果解决了切换系统的全局参数化动力学与其扰动之间的对应关系。我们表明,在相应参数下,存在一个从切换系统的莫尔斯图到L系统的莫尔斯图的保序映射,该映射在吸引子集合上是满射的,在不动点吸引子集合上是双射的。我们提供了重要的例子来说明为什么这种对应关系不能得到加强。