Suppr超能文献

通过时间序列进行模型拒绝与参数约简

Model Rejection and Parameter Reduction via Time Series.

作者信息

Cummins Bree, Gedeon Tomas, Harker Shaun, Mischaikow Konstantin

机构信息

Department of Mathematical Sciences, Montana State University, Bozeman, MT 59715.

Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019.

出版信息

SIAM J Appl Dyn Syst. 2018;17(2):1589-1616. doi: 10.1137/17M1134548. Epub 2018 May 31.

Abstract

We show how a graph algorithm for finding matching labeled paths in pairs of labeled directed graphs can be used to perform model invalidation for a class of dynamical systems including regulatory network models of relevance to systems biology. In particular, given a partial order of events describing local minima and local maxima of observed quantities from experimental time series data, we produce a labeled directed graph we call the for which every path from root to leaf corresponds to a plausible sequence of events. We then consider the regulatory network model, which can itself be rendered into a labeled directed graph we call the via techniques previously developed in computational dynamics. Labels on the pattern graph correspond to experimentally observed events, while labels on the search graph correspond to mathematical facts about the model. We give a theoretical guarantee that failing to find a match invalidates the model. As an application we consider gene regulatory models for the yeast .

摘要

我们展示了一种用于在成对的带标签有向图中寻找匹配带标签路径的图算法,如何能够用于对一类动力系统进行模型无效性验证,这类动力系统包括与系统生物学相关的调控网络模型。具体而言,给定一个描述来自实验时间序列数据中观测数量的局部最小值和局部最大值的事件偏序关系,我们生成一个带标签的有向图,我们称之为模式图,从根节点到叶节点的每条路径都对应一个合理的事件序列。然后我们考虑调控网络模型,通过计算动力学中先前开发的技术,它本身可以被转化为一个我们称之为搜索图的带标签有向图。模式图上的标签对应于实验观测到的事件,而搜索图上的标签对应于关于模型的数学事实。我们给出了一个理论保证,即未能找到匹配会使模型无效。作为一个应用,我们考虑酵母的基因调控模型。

相似文献

1
Model Rejection and Parameter Reduction via Time Series.
SIAM J Appl Dyn Syst. 2018;17(2):1589-1616. doi: 10.1137/17M1134548. Epub 2018 May 31.
2
Boolean factor graph model for biological systems: the yeast cell-cycle network.
BMC Bioinformatics. 2021 Sep 17;22(1):442. doi: 10.1186/s12859-021-04361-8.
3
Path matching and graph matching in biological networks.
J Comput Biol. 2007 Jan-Feb;14(1):56-67. doi: 10.1089/cmb.2006.0076.
4
DSGRN: Examining the Dynamics of Families of Logical Models.
Front Physiol. 2018 May 23;9:549. doi: 10.3389/fphys.2018.00549. eCollection 2018.
5
Global dynamics for switching systems and their extensions by linear differential equations.
Physica D. 2018 Mar 15;367:19-37. doi: 10.1016/j.physd.2017.11.003. Epub 2017 Nov 15.
6
Intrinsic graph structure estimation using graph Laplacian.
Neural Comput. 2014 Jul;26(7):1455-83. doi: 10.1162/NECO_a_00603. Epub 2014 Apr 7.
8
Comparison of Combinatorial Signatures of Global Network Dynamics Generated by Two Classes of ODE Models.
SIAM J Appl Dyn Syst. 2019;18(1):418-457. doi: 10.1137/18m1163610. Epub 2019 Feb 28.
9
The storage capacity of a directed graph and nodewise autonomous, ubiquitous learning.
Front Comput Neurosci. 2023 Oct 19;17:1254355. doi: 10.3389/fncom.2023.1254355. eCollection 2023.
10
Using extremal events to characterize noisy time series.
J Math Biol. 2020 Apr;80(5):1523-1557. doi: 10.1007/s00285-020-01471-4. Epub 2020 Feb 1.

引用本文的文献

1
Network topology and interaction logic determine states it supports.
NPJ Syst Biol Appl. 2024 Aug 28;10(1):98. doi: 10.1038/s41540-024-00423-8.
2
A yeast cell cycle pulse generator model shows consistency with multiple oscillatory and checkpoint mutant datasets.
Math Biosci. 2024 Jan;367:109102. doi: 10.1016/j.mbs.2023.109102. Epub 2023 Nov 7.
4
Experimental guidance for discovering genetic networks through hypothesis reduction on time series.
PLoS Comput Biol. 2022 Oct 10;18(10):e1010145. doi: 10.1371/journal.pcbi.1010145. eCollection 2022 Oct.
6
Comparison of Combinatorial Signatures of Global Network Dynamics Generated by Two Classes of ODE Models.
SIAM J Appl Dyn Syst. 2019;18(1):418-457. doi: 10.1137/18m1163610. Epub 2019 Feb 28.
7
Multistability in the epithelial-mesenchymal transition network.
BMC Bioinformatics. 2020 Feb 24;21(1):71. doi: 10.1186/s12859-020-3413-1.
8
Multi-parameter exploration of dynamics of regulatory networks.
Biosystems. 2020 Apr;190:104113. doi: 10.1016/j.biosystems.2020.104113. Epub 2020 Feb 10.
9
Using extremal events to characterize noisy time series.
J Math Biol. 2020 Apr;80(5):1523-1557. doi: 10.1007/s00285-020-01471-4. Epub 2020 Feb 1.
10
Identifying robust hysteresis in networks.
PLoS Comput Biol. 2018 Apr 23;14(4):e1006121. doi: 10.1371/journal.pcbi.1006121. eCollection 2018 Apr.

本文引用的文献

1
Combinatorial representation of parameter space for switching networks.
SIAM J Appl Dyn Syst. 2016;15(4):2176-2212. doi: 10.1137/15M1052743. Epub 2016 Nov 15.
2
Analyzing transcription dynamics during the budding yeast cell cycle.
Methods Mol Biol. 2014;1170:295-312. doi: 10.1007/978-1-4939-0888-2_14.
3
Combinatorial-topological framework for the analysis of global dynamics.
Chaos. 2012 Dec;22(4):047508. doi: 10.1063/1.4767672.
4
Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network.
Mol Cell. 2012 Mar 9;45(5):669-79. doi: 10.1016/j.molcel.2011.12.033. Epub 2012 Feb 2.
5
Global control of cell-cycle transcription by coupled CDK and network oscillators.
Nature. 2008 Jun 12;453(7197):944-7. doi: 10.1038/nature06955. Epub 2008 May 7.
6
Modeling and simulation of genetic regulatory systems: a literature review.
J Comput Biol. 2002;9(1):67-103. doi: 10.1089/10665270252833208.
7
Co-operative components, spatial localization and oscillatory cellular dynamics.
J Theor Biol. 1972 Feb;34(2):219-37. doi: 10.1016/0022-5193(72)90157-9.
8
The logical analysis of continuous, non-linear biochemical control networks.
J Theor Biol. 1973 Apr;39(1):103-29. doi: 10.1016/0022-5193(73)90208-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验