Suppr超能文献

磁共振成像中II型局灶性皮质发育异常的自动检测:基于表面的形态测量学和机器学习的应用前景如何?

Automatic Detection of Focal Cortical Dysplasia Type II in MRI: Is the Application of Surface-Based Morphometry and Machine Learning Promising?

作者信息

Ganji Zohreh, Hakak Mohsen Aghaee, Zamanpour Seyed Amir, Zare Hoda

机构信息

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Epilepsy Monitoring Unit, Research and Education Department, Razavi Hospital, Mashhad, Iran.

出版信息

Front Hum Neurosci. 2021 Feb 19;15:608285. doi: 10.3389/fnhum.2021.608285. eCollection 2021.

Abstract

BACKGROUND AND OBJECTIVES

Focal cortical dysplasia (FCD) is a type of malformations of cortical development and one of the leading causes of drug-resistant epilepsy. Postoperative results improve the diagnosis of lesions on structural MRIs. Advances in quantitative algorithms have increased the identification of FCD lesions. However, due to significant differences in size, shape, and location of the lesion in different patients and a big deal of time for the objective diagnosis of lesion as well as the dependence of individual interpretation, sensitive approaches are required to address the challenge of lesion diagnosis. In this research, a FCD computer-aided diagnostic system to improve existing methods is presented.

METHODS

Magnetic resonance imaging (MRI) data were collected from 58 participants (30 with histologically confirmed FCD type II and 28 without a record of any neurological prognosis). Morphological and intensity-based features were calculated for each cortical surface and inserted into an artificial neural network. Statistical examinations evaluated classifier efficiency.

RESULTS

Neural network evaluation metrics-sensitivity, specificity, and accuracy-were 96.7, 100, and 98.6%, respectively. Furthermore, the accuracy of the classifier for the detection of the lobe and hemisphere of the brain, where the FCD lesion is located, was 84.2 and 77.3%, respectively.

CONCLUSION

Analyzing surface-based features by automated machine learning can give a quantitative and objective diagnosis of FCD lesions in presurgical assessment and improve postsurgical outcomes.

摘要

背景与目的

局灶性皮质发育不良(FCD)是皮质发育畸形的一种类型,也是耐药性癫痫的主要病因之一。术后结果改善了对结构性磁共振成像(MRI)上病变的诊断。定量算法的进展增加了对FCD病变的识别。然而,由于不同患者病变的大小、形状和位置存在显著差异,且病变的客观诊断需要大量时间以及依赖个人解读,因此需要灵敏的方法来应对病变诊断的挑战。在本研究中,提出了一种用于改进现有方法的FCD计算机辅助诊断系统。

方法

从58名参与者中收集磁共振成像(MRI)数据(30名经组织学证实为II型FCD,28名无任何神经学预后记录)。为每个皮质表面计算基于形态学和强度的特征,并将其插入人工神经网络。统计检验评估分类器效率。

结果

神经网络评估指标——灵敏度、特异度和准确度——分别为96.7%、100%和98.6%。此外,分类器对FCD病变所在脑叶和半球检测的准确度分别为84.2%和77.3%。

结论

通过自动化机器学习分析基于表面的特征,可以在术前评估中对FCD病变进行定量和客观诊断,并改善术后结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bdc/7933541/92a135392c46/fnhum-15-608285-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验