Suppr超能文献

利用叶绿素荧光动力学、高光谱成像和机器学习对生菜( 种)水分胁迫响应基因组位点进行分子图谱分析

Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce ( spp.) Using Kinetics Chlorophyll Fluorescence, Hyperspectral Imaging and Machine Learning.

作者信息

Kumar Pawan, Eriksen Renee L, Simko Ivan, Mou Beiquan

机构信息

Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA, United States.

Forage Seed and Cereal Research Unit, USDA-ARS, Corvallis, OR, United States.

出版信息

Front Genet. 2021 Feb 18;12:634554. doi: 10.3389/fgene.2021.634554. eCollection 2021.

Abstract

Deep understanding of genetic architecture of water-stress tolerance is critical for efficient and optimal development of water-stress tolerant cultivars, which is the most economical and environmentally sound approach to maintain lettuce production with limited irrigation. Lettuce ( L.) production in areas with limited precipitation relies heavily on the use of ground water for irrigation. Lettuce plants are highly susceptible to water-stress, which also affects their nutrient uptake efficiency. Water stressed plants show reduced growth, lower biomass, and early bolting and flowering resulting in bitter flavors. Traditional phenotyping methods to evaluate water-stress are labor intensive, time-consuming and prone to errors. High throughput phenotyping platforms using kinetic chlorophyll fluorescence and hyperspectral imaging can effectively attain physiological traits related to photosynthesis and secondary metabolites that can enhance breeding efficiency for water-stress tolerance. Kinetic chlorophyll fluorescence and hyperspectral imaging along with traditional horticultural traits identified genomic loci affected by water-stress. Supervised machine learning models were evaluated for their accuracy to distinguish water-stressed plants and to identify the most important water-stress related parameters in lettuce. Random Forest (RF) had classification accuracy of 89.7% using kinetic chlorophyll fluorescence parameters and Neural Network (NN) had classification accuracy of 89.8% using hyperspectral imaging derived vegetation indices. The top ten chlorophyll fluorescence parameters and vegetation indices selected by sequential forward selection by RF and NN were genetically mapped using a × interspecific recombinant inbred line (RIL) population. A total of 25 quantitative trait loci (QTL) segregating for water-stress related horticultural traits, 26 QTL for the chlorophyll fluorescence traits and 34 QTL for spectral vegetation indices (VI) were identified. The percent phenotypic variation (PV) explained by the horticultural QTL ranged from 6.41 to 19.5%, PV explained by chlorophyll fluorescence QTL ranged from 6.93 to 13.26% while the PV explained by the VI QTL ranged from 7.2 to 17.19%. Eight QTL clusters harboring co-localized QTL for horticultural traits, chlorophyll fluorescence parameters and VI were identified on six lettuce chromosomes. Molecular markers linked to the mapped QTL clusters can be targeted for marker-assisted selection to develop water-stress tolerant lettuce.

摘要

深入了解水分胁迫耐受性的遗传结构对于高效、优化地培育耐水分胁迫品种至关重要,这是在有限灌溉条件下维持生菜产量的最经济且环保的方法。在降水有限的地区,生菜生产严重依赖地下水灌溉。生菜植株对水分胁迫高度敏感,这也会影响其养分吸收效率。受水分胁迫的植株生长减缓、生物量降低,且过早抽薹开花,导致口感发苦。传统的评估水分胁迫的表型分析方法 labor intensive、耗时且容易出错。使用动态叶绿素荧光和高光谱成像的高通量表型分析平台能够有效地获取与光合作用和次生代谢产物相关的生理性状,从而提高耐水分胁迫的育种效率。动态叶绿素荧光和高光谱成像以及传统园艺性状确定了受水分胁迫影响的基因组位点。对监督机器学习模型区分受水分胁迫植株的准确性以及识别生菜中与水分胁迫相关的最重要参数的能力进行了评估。随机森林(RF)使用动态叶绿素荧光参数的分类准确率为89.7%,神经网络(NN)使用高光谱成像衍生的植被指数的分类准确率为89.8%。通过RF和NN的顺序向前选择选出的前十个叶绿素荧光参数和植被指数,利用一个种间重组自交系(RIL)群体进行了基因定位。共鉴定出25个与水分胁迫相关园艺性状分离的数量性状位点(QTL)、26个叶绿素荧光性状的QTL以及34个光谱植被指数(VI)的QTL。园艺QTL解释的表型变异百分比(PV)范围为6.41%至19.5%,叶绿素荧光QTL解释的PV范围为6.93%至13.26%,而VI QTL解释的PV范围为7.2%至17.19%。在六个生菜染色体上鉴定出了八个QTL簇,这些簇包含了园艺性状、叶绿素荧光参数和VI的共定位QTL。与定位的QTL簇连锁的分子标记可用于标记辅助选择,以培育耐水分胁迫的生菜。 (原文中“labor intensive”未翻译完整,推测可能是“劳动强度大”之类的意思,这里保留原文是为了更准确呈现原文内容)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa78/7935093/4ea19109bd5f/fgene-12-634554-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验