Suppr超能文献

未识别元素的判断任务中的启发法。

Heuristics in Judgment Tasks with Unrecognized Elements.

作者信息

Dimase Miguel

机构信息

Faculty of Psychology, University of Buenos Aires, Argentina.

出版信息

Eur J Psychol. 2019 Sep 27;15(3):531-552. doi: 10.5964/ejop.v15i3.1687. eCollection 2019 Sep.

Abstract

According to published studies in the field, random choice and random estimation are the only options for tackling judgment and decision-making tasks where the elements from which to infer a required criteria are not recognized. In Campitelli and Labollita (2010), participants were asked to estimate the nationality and Elo rating of chess players based on their surnames. In the present study I re-analyze those 123 participants from Campitelli and Labollita (2010) who declared not to have recognized any player. Even in this scenario of null recognition, they managed to correctly infer the Russian players' nationality and Elo ratings; it is likely that successful and ecologically rational heuristics were used. I found evidence of new structured probabilistic environments external to the lab, likely to have generated a number of undirected and involuntary associations in the memories of the participants, who may have used them in their heuristics to infer the criteria requested. The results support the models of limited rationality: despite the scarcity of available information, the fact that the heuristics did not guarantee success, and the risk of overestimating the heuristics' effectiveness while underestimating their own biases, participants still favored them over random guesswork, thus suggesting an adaptive use. I invite a revision of what is considered "good reasoning" when applied to problems in environments of uncertainty that call for satisfactory, rather than optimal, solutions. This research provides the basis for new studies in the field of heuristics under previously unexplored conditions, and a new perspective for the analysis of prior works, towards a better understanding of the relationship between cognition and the environment.

摘要

根据该领域已发表的研究,在无法识别用于推断所需标准的元素的情况下,随机选择和随机估计是处理判断和决策任务的唯一选择。在坎皮泰利和拉博利塔(2010年)的研究中,参与者被要求根据国际象棋棋手的姓氏来估计他们的国籍和等级分。在本研究中,我重新分析了坎皮泰利和拉博利塔(2010年)中123名宣称不认识任何棋手的参与者。即使在这种完全不认识的情况下,他们仍成功推断出了俄罗斯棋手的国籍和等级分;很可能他们使用了成功且符合生态理性的启发式方法。我发现了实验室之外新的结构化概率环境的证据,这种环境可能在参与者的记忆中产生了许多无向和非自愿的联想,他们可能在启发式方法中利用这些联想来推断所需标准。研究结果支持有限理性模型:尽管可用信息匮乏,启发式方法不能保证成功,而且存在高估启发式方法有效性而低估自身偏差的风险,但参与者仍然更喜欢使用启发式方法而非随机猜测,这表明了一种适应性应用。我呼吁在应用于不确定性环境中的问题时,对什么是“好的推理”进行重新审视,这些问题需要令人满意而非最优的解决方案。这项研究为在以前未探索的条件下启发式方法领域的新研究提供了基础,并为分析先前的研究提供了新的视角,以更好地理解认知与环境之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/606d/7909188/e9512fd75317/ejop-15-531-g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验