Suppr超能文献

非单调功能反应对疾病传播模型的影响:建模与仿真

Effects of Nonmonotonic Functional Responses on a Disease Transmission Model: Modeling and Simulation.

作者信息

Kumar Abhishek

机构信息

Department of Applied Mathematics, Delhi Technological University, Delhi, 110042 India.

出版信息

Commun Math Stat. 2022;10(2):195-214. doi: 10.1007/s40304-020-00217-4. Epub 2021 Mar 2.

Abstract

In this article, a novel susceptible-infected-recovered epidemic model with nonmonotonic incidence and treatment rates is proposed and analyzed mathematically. The Monod-Haldane functional response is considered for nonmonotonic behavior of both incidence rate and treatment rate. The model analysis shows that the model has two equilibria which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). The stability analysis has been performed for the local and global behavior of the DFE and EE. With the help of the basic reproduction number , we investigate that DFE is locally asymptotically stable when and unstable when . The local stability of DFE at has been analyzed, and it is obtained that DFE exhibits a forward transcritical bifurcation. Further, we identify conditions for the existence of EE and show the local stability of EE under certain conditions. Moreover, the global stability behavior of DFE and EE has been investigated. Lastly, numerical simulations have been done in the support of our theoretical findings.

摘要

在本文中,提出了一种具有非单调发病率和治疗率的新型易感-感染-康复传染病模型,并进行了数学分析。考虑了莫诺德-霍尔丹功能反应以解释发病率和治疗率的非单调行为。模型分析表明,该模型有两个平衡点,分别称为无病平衡点(DFE)和地方病平衡点(EE)。对DFE和EE的局部和全局行为进行了稳定性分析。借助基本再生数 ,我们研究发现,当 时DFE是局部渐近稳定的,而当 时是不稳定的。分析了DFE在 时的局部稳定性,结果表明DFE呈现前向跨临界分岔。此外,我们确定了EE存在的条件,并表明在某些条件下EE是局部稳定的。此外,还研究了DFE和EE的全局稳定性行为。最后,进行了数值模拟以支持我们的理论发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0060/7921616/3a0048e5d57c/40304_2020_217_Fig1_HTML.jpg

相似文献

1
Effects of Nonmonotonic Functional Responses on a Disease Transmission Model: Modeling and Simulation.
Commun Math Stat. 2022;10(2):195-214. doi: 10.1007/s40304-020-00217-4. Epub 2021 Mar 2.
2
A Fractional-Order Epidemic Model with Quarantine Class and Nonmonotonic Incidence: Modeling and Simulations.
Iran J Sci Technol Trans A Sci. 2022;46(4):1249-1263. doi: 10.1007/s40995-022-01339-w. Epub 2022 Aug 9.
3
A study on the stability behavior of an epidemic model with ratio-dependent incidence and saturated treatment.
Theory Biosci. 2020 Jun;139(2):225-234. doi: 10.1007/s12064-020-00314-6. Epub 2020 Mar 30.
4
A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis.
Theory Biosci. 2020 Feb;139(1):67-76. doi: 10.1007/s12064-019-00300-7. Epub 2019 Sep 6.
5
A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates.
Theory Biosci. 2019 Nov;138(2):203-213. doi: 10.1007/s12064-019-00275-5. Epub 2019 Jan 21.
6
Optimal control of a fractional order SEIQR epidemic model with non-monotonic incidence and quarantine class.
Comput Biol Med. 2024 Aug;178:108682. doi: 10.1016/j.compbiomed.2024.108682. Epub 2024 Jun 1.
7
Global investigation for an "SIS" model for COVID-19 epidemic with asymptomatic infection.
Math Biosci Eng. 2023 Jan 11;20(3):5298-5315. doi: 10.3934/mbe.2023245.
8
A Mathematical Model Analysis for the Transmission Dynamics of Leptospirosis Disease in Human and Rodent Populations.
Comput Math Methods Med. 2022 Sep 17;2022:1806585. doi: 10.1155/2022/1806585. eCollection 2022.
9
Nonlinear dynamics of a time-delayed epidemic model with two explicit aware classes, saturated incidences, and treatment.
Nonlinear Dyn. 2020;101(3):1693-1715. doi: 10.1007/s11071-020-05762-9. Epub 2020 Jul 4.
10
Dynamic analysis of the role of innate immunity in SEIS epidemic model.
Eur Phys J Plus. 2021;136(4):439. doi: 10.1140/epjp/s13360-021-01390-3. Epub 2021 Apr 23.

引用本文的文献

1
A Fractional-Order Epidemic Model with Quarantine Class and Nonmonotonic Incidence: Modeling and Simulations.
Iran J Sci Technol Trans A Sci. 2022;46(4):1249-1263. doi: 10.1007/s40995-022-01339-w. Epub 2022 Aug 9.
2
Global Dynamics of a Diffusive Two-Strain Epidemic Model with Non-Monotone Incidence Rate.
Iran J Sci Technol Trans A Sci. 2022;46(3):859-868. doi: 10.1007/s40995-022-01287-5. Epub 2022 May 13.

本文引用的文献

1
A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis.
Theory Biosci. 2020 Feb;139(1):67-76. doi: 10.1007/s12064-019-00300-7. Epub 2019 Sep 6.
2
A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates.
Theory Biosci. 2019 Nov;138(2):203-213. doi: 10.1007/s12064-019-00275-5. Epub 2019 Jan 21.
3
Dynamic behaviors of a modified SIR model in epidemic diseases using nonlinear incidence and recovery rates.
PLoS One. 2017 Apr 20;12(4):e0175789. doi: 10.1371/journal.pone.0175789. eCollection 2017.
4
Dynamical models of tuberculosis and their applications.
Math Biosci Eng. 2004 Sep;1(2):361-404. doi: 10.3934/mbe.2004.1.361.
5
An sveir model for assessing potential impact of an imperfect anti-sars vaccine.
Math Biosci Eng. 2006 Jul;3(3):485-512. doi: 10.3934/mbe.2006.3.485.
6
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.
Math Biosci. 2002 Nov-Dec;180:29-48. doi: 10.1016/s0025-5564(02)00108-6.
9
Permanence and the dynamics of biological systems.
Math Biosci. 1992 Sep;111(1):1-71. doi: 10.1016/0025-5564(92)90078-b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验