Goel Kanica
Department of Applied Mathematics, Delhi Technological University, Delhi, 110042, India.
Theory Biosci. 2019 Nov;138(2):203-213. doi: 10.1007/s12064-019-00275-5. Epub 2019 Jan 21.
A novel nonlinear time-delayed susceptible-infected-recovered epidemic model with Beddington-DeAngelis-type incidence rate and saturated functional-type treatment rate is proposed and analyzed mathematically and numerically to control the spread of epidemic in the society. Analytical study of the model shows that it has two equilibrium points: disease-free equilibrium (DFE) and endemic equilibrium (EE). The stability of the model at DFE is discussed with the help of basic reproduction number, denoted by [Formula: see text], and it is shown that if the basic reproduction number [Formula: see text] is less than one, the DFE is locally asymptotically stable and unstable if [Formula: see text] is greater than one. The stability of the model at DFE for [Formula: see text] is analyzed using center manifold theory and Castillo-Chavez and Song theorem which reveals a forward bifurcation. We also derived the conditions for the stability and occurrence of Hopf bifurcation of the model at endemic equilibrium. Further, to illustrate the analytical results, the model is simulated numerically.
提出了一种具有Beddington-DeAngelis型发病率和饱和功能型治疗率的新型非线性时滞易感-感染-康复传染病模型,并对其进行了数学和数值分析,以控制传染病在社会中的传播。对该模型的分析研究表明,它有两个平衡点:无病平衡点(DFE)和地方病平衡点(EE)。借助基本再生数(用[公式:见正文]表示)讨论了模型在DFE处的稳定性,结果表明,如果基本再生数[公式:见正文]小于1,则DFE是局部渐近稳定的;如果[公式:见正文]大于1,则DFE是不稳定的。利用中心流形理论以及Castillo-Chavez和Song定理分析了模型在DFE处对于[公式:见正文]的稳定性,该分析揭示了一个正向分岔。我们还推导了模型在地方病平衡点处的稳定性条件和Hopf分岔发生的条件。此外,为了说明分析结果,对该模型进行了数值模拟。