Colmeiro Ramiro R, Verrastro Claudio, Minsky Daniel, Grosges Thomas
Université de Technologie de Troyes, Génération Automatique de Maillage et Méthodes Avancées (GAMMA), Institut National de Recherche en Informatique et en Automatique, Troyes, France.
Universidad Tecnológica Nacional, Grupo de Inteligencia Artificial y Robótica, Buenos Aires, Argentina.
J Med Imaging (Bellingham). 2021 Mar;8(2):024001. doi: 10.1117/1.JMI.8.2.024001. Epub 2021 Mar 1.
The reconstruction of positron emission tomography images is a computationally intensive task which benefits from the use of increasingly complex physical models. Aiming to reduce the computational burden by means of a reduced system matrix, we present a list mode reconstruction approach based on maximum likelihood-expectation maximization and a sliced mesh support. The reconstruction strategy uses a fully 3D projection along series of 2D meshes arranged in the axial plane of the scanner. These series of meshes describe the continuous volumetric activity using a piece-wise linear function interpolated from the mesh elements. The mesh support is automatically adapted to the underlying structure of the activity by means of a remeshing process. This process finds a high-quality compact mesh representation constrained to a controlled interpolation error. The method is tested using a Monte Carlo simulation of a Hoffman brain phantom and a National Electrical Manufacturers Association image quality phantom acquisition, using different sets of statistics. The reconstructions are compared against a voxelized reconstruction under different conditions, achieving similar or superior results. The number of parameters needed to reconstruct the image in voxel and mesh support is also compared, and the mesh reconstruction permits to reduce the number of nodes used to represent a complex image. The proposed reconstruction strategy reduces the number of parameters needed to describe the activity distribution by more than one order of magnitude for similar voxel size and with similar accuracy than state-of-the-art methods.
正电子发射断层扫描图像的重建是一项计算量很大的任务,采用日益复杂的物理模型会使其受益。为了通过简化系统矩阵来减轻计算负担,我们提出了一种基于最大似然期望最大化和切片网格支持的列表模式重建方法。该重建策略沿着排列在扫描仪轴向平面上的一系列二维网格进行全三维投影。这些网格系列使用从网格元素插值得到的分段线性函数来描述连续的体积活动。通过重新网格化过程,网格支持会自动适应活动的基础结构。此过程会找到一个受控制的插值误差约束的高质量紧凑网格表示。使用霍夫曼脑模型的蒙特卡罗模拟和美国国家电气制造商协会图像质量模型采集,并采用不同的统计集对该方法进行测试。在不同条件下,将重建结果与体素化重建进行比较,获得了相似或更好的结果。还比较了在体素和网格支持下重建图像所需的参数数量,并且网格重建允许减少用于表示复杂图像的节点数量。对于类似的体素大小且与现有方法具有相似的精度,所提出的重建策略将描述活动分布所需的参数数量减少了一个多数量级。