Suppr超能文献

Runx 蛋白和转录机制调控记忆性 CD8+T 细胞的发育。

Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development.

机构信息

Department of Immunology and Microbiology, The Scripps Research Institute - FL, Jupiter, FL, USA.

出版信息

Immunol Rev. 2021 Mar;300(1):100-124. doi: 10.1111/imr.12954. Epub 2021 Mar 7.

Abstract

Adaptive immunity to intracellular pathogens and tumors is mediated by antigen-experienced CD8 T cells. Individual naive CD8 T cells have the potential to differentiate into a diverse array of antigen-experienced subsets that exhibit distinct effector functions, life spans, anatomic positioning, and potential for regenerating an entirely new immune response during iterative pathogenic exposures. The developmental process by which activated naive cells undergo diversification involves regulation of chromatin structure and transcription but is not entirely understood. This review examines how alterations in chromatin structure, transcription factor binding, extracellular signals, and single-cell gene expression explain the differential development of distinct effector (T ) and memory (T ) CD8 T cell subsets. Special emphasis is placed on how Runx proteins function with additional transcription factors to pioneer changes in chromatin accessibility and drive transcriptional programs that establish the core attributes of cytotoxic T lymphocytes, subdivide circulating and non-circulating T cell subsets, and govern terminal differentiation. The discussion integrates the roles of specific cytokine signals, transcriptional circuits and how regulation of individual nucleosomes and RNA polymerase II activity can contribute to the process of differentiation. A model that integrates many of these features is discussed to conceptualize how activated CD8 T cells arrive at their fates.

摘要

细胞内病原体和肿瘤的适应性免疫由抗原经验的 CD8 T 细胞介导。单个幼稚 CD8 T 细胞具有分化为多种抗原经验亚群的潜力,这些亚群表现出不同的效应功能、寿命、解剖定位以及在反复的病原暴露过程中再生全新免疫反应的潜力。激活的幼稚细胞经历多样化的发育过程涉及染色质结构和转录的调节,但尚未完全理解。本综述探讨了染色质结构、转录因子结合、细胞外信号和单细胞基因表达的改变如何解释不同效应(T)和记忆(T)CD8 T 细胞亚群的差异发育。特别强调了 Runx 蛋白如何与其他转录因子一起发挥作用,开创染色质可及性的变化,并驱动建立细胞毒性 T 淋巴细胞核心属性、细分循环和非循环 T 细胞亚群以及控制终末分化的转录程序。讨论整合了特定细胞因子信号、转录回路以及如何调节单个核小体和 RNA 聚合酶 II 活性的作用,以促进分化过程。讨论了一个整合了许多这些特征的模型,以概念化激活的 CD8 T 细胞如何达到它们的命运。

相似文献

1
Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development.
Immunol Rev. 2021 Mar;300(1):100-124. doi: 10.1111/imr.12954. Epub 2021 Mar 7.
2
Transcriptional Control of Cell Fate Determination in Antigen-Experienced CD8 T Cells.
Cold Spring Harb Perspect Biol. 2022 Feb 1;14(2):a037945. doi: 10.1101/cshperspect.a037945.
3
Stability and flexibility in chromatin structure and transcription underlies memory CD8 T-cell differentiation.
F1000Res. 2019 Jul 31;8. doi: 10.12688/f1000research.18211.1. eCollection 2019.
5
Chromatin accessibility of CD8 T cell differentiation and metabolic regulation.
Cell Biol Toxicol. 2021 Jun;37(3):367-378. doi: 10.1007/s10565-020-09546-0. Epub 2020 Jul 12.
6
E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation.
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2013452118.
7
Canonical BAF complex activity shapes the enhancer landscape that licenses CD8 T cell effector and memory fates.
Immunity. 2023 Jun 13;56(6):1303-1319.e5. doi: 10.1016/j.immuni.2023.05.005.
8
Active maintenance of CD8 T cell naivety through regulation of global genome architecture.
Cell Rep. 2023 Oct 31;42(10):113301. doi: 10.1016/j.celrep.2023.113301. Epub 2023 Oct 19.
9
Developmental Origin Governs CD8 T Cell Fate Decisions during Infection.
Cell. 2018 Jun 28;174(1):117-130.e14. doi: 10.1016/j.cell.2018.05.029. Epub 2018 Jun 14.
10
Epigenetics and CD8 T cell memory.
Immunol Rev. 2022 Jan;305(1):77-89. doi: 10.1111/imr.13057. Epub 2021 Dec 18.

引用本文的文献

1
Deciphering the role of histone modifications in memory and exhausted CD8 T cells.
Sci Rep. 2025 May 19;15(1):17359. doi: 10.1038/s41598-025-99804-0.
2
Pan-cancer analysis predicts MBOAT2 as a potential new ferroptosis related gene immune checkpoint.
Discov Oncol. 2025 Mar 15;16(1):322. doi: 10.1007/s12672-025-02078-1.
3
Novel biomarkers: the RUNX family as prognostic predictors in colorectal cancer.
Front Immunol. 2024 Dec 9;15:1430136. doi: 10.3389/fimmu.2024.1430136. eCollection 2024.
4
Pan-cancer analysis of B3GNT5 with potential implications for cancer immunotherapy and cancer stem cell stemness.
PLoS One. 2024 Dec 13;19(12):e0314609. doi: 10.1371/journal.pone.0314609. eCollection 2024.
5
The Potential Impact of HNRNPA2B1 on Human Cancers Prognosis and Immune Microenvironment.
J Immunol Res. 2024 Sep 5;2024:5515307. doi: 10.1155/2024/5515307. eCollection 2024.
7
The transcriptional cofactor Tle3 reciprocally controls effector and central memory CD8 T cell fates.
Nat Immunol. 2024 Feb;25(2):294-306. doi: 10.1038/s41590-023-01720-w. Epub 2024 Jan 18.
9
Leucyl and Cystinyl Aminopeptidase as a Prognostic-Related Biomarker in OV Correlating with Immune Infiltrates.
Pharmgenomics Pers Med. 2023 Jun 2;16:551-568. doi: 10.2147/PGPM.S400145. eCollection 2023.
10
CD4 T cell calibration of antigen-presenting cells optimizes antiviral CD8 T cell immunity.
Nat Immunol. 2023 Jun;24(6):979-990. doi: 10.1038/s41590-023-01517-x. Epub 2023 May 15.

本文引用的文献

1
Central memory CD8 T cells derive from stem-like Tcf7 effector cells in the absence of cytotoxic differentiation.
Immunity. 2020 Nov 17;53(5):985-1000.e11. doi: 10.1016/j.immuni.2020.09.005. Epub 2020 Oct 30.
2
Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25667-25678. doi: 10.1073/pnas.2008571117. Epub 2020 Sep 25.
3
Early precursor T cells establish and propagate T cell exhaustion in chronic infection.
Nat Immunol. 2020 Oct;21(10):1256-1266. doi: 10.1038/s41590-020-0760-z. Epub 2020 Aug 24.
5
KLRG1 Memory CD8 T Cells Combine Properties of Short-Lived Effectors and Long-Lived Memory.
J Immunol. 2020 Aug 15;205(4):1059-1069. doi: 10.4049/jimmunol.1901512. Epub 2020 Jul 1.
6
Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits.
Nat Immunol. 2020 Jul;21(7):777-789. doi: 10.1038/s41590-020-0706-5. Epub 2020 Jun 22.
7
Heterogenous Populations of Tissue-Resident CD8 T Cells Are Generated in Response to Infection and Malignancy.
Immunity. 2020 May 19;52(5):808-824.e7. doi: 10.1016/j.immuni.2020.04.007.
9
Developmental plasticity allows outside-in immune responses by resident memory T cells.
Nat Immunol. 2020 Apr;21(4):412-421. doi: 10.1038/s41590-020-0607-7. Epub 2020 Feb 17.
10
Integrating resident memory into T cell differentiation models.
Curr Opin Immunol. 2020 Apr;63:35-42. doi: 10.1016/j.coi.2020.01.001. Epub 2020 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验