Suppr超能文献

你的基因能(不能)告诉你关于 BMI 和糖尿病的什么信息。

What your genes can (and can't) tell you about BMI and diabetes.

机构信息

Hubert Department of Global Health and the Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA.

Population Studies Center and the Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Biodemography Soc Biol. 2020 Jan-Mar;66(1):40-49. doi: 10.1080/19485565.2020.1806032.

Abstract

Body mass index (BMI) is commonly used as a proxy for adiposity in epidemiological and public health studies. However, BMI may suffer from issues of misreporting and, because it fluctuates over the life course, its association with morbidities such as diabetes is difficult to measure. We examined the associations between actual BMI, genetic propensity for high BMI, and diabetes to better understand whether a BMI polygenic score (PGS) explained more variation in diabetes than self-reported BMI. We used a sample of non-Hispanic white adults from the longitudinal Health and Retirement Study (1992-2016). Structural equation models were used to determine how much variation in BMI could be explained by a BMI PGS. Then, we used logistic regression models (n = 12,086) to study prevalent diabetes at baseline and Cox regression models (n = 11,129) to examine incident diabetes with up to 24 years of follow-up. We observed that while both actual BMI and the BMI PGS were significantly associated with diabetes, actual BMI had a stronger association than its genetic counterpart and resulted in better model performance. Moreover, actual BMI explained more variation in baseline and incident diabetes than its genetic counterpart which may suggest that actual BMI captures more than just adiposity as intended.

摘要

体重指数 (BMI) 通常被用作流行病学和公共卫生研究中肥胖的替代指标。然而,BMI 可能存在报告不准确的问题,而且由于它在整个生命周期中波动,因此很难衡量其与糖尿病等疾病的关联。我们研究了实际 BMI、高 BMI 的遗传倾向与糖尿病之间的关系,以更好地理解 BMI 多基因评分 (PGS) 是否比自我报告的 BMI 能更好地解释糖尿病的变化。我们使用了来自纵向健康与退休研究(1992-2016 年)的非西班牙裔白人成年人样本。结构方程模型用于确定 BMI PGS 可以解释多少 BMI 变化。然后,我们使用逻辑回归模型(n=12086)研究基线时的现患糖尿病,使用 Cox 回归模型(n=11129)研究最多 24 年的随访中糖尿病的发病情况。我们观察到,尽管实际 BMI 和 BMI PGS 都与糖尿病显著相关,但实际 BMI 与糖尿病的关联比遗传 BMI 更强,且模型性能更好。此外,实际 BMI 比遗传 BMI 更好地解释了基线和发病糖尿病的变化,这可能表明实际 BMI 除了预期的肥胖之外还能更好地捕捉其他因素。

相似文献

本文引用的文献

4
Polygenic Epidemiology.多基因流行病学
Genet Epidemiol. 2016 May;40(4):268-72. doi: 10.1002/gepi.21966. Epub 2016 Apr 7.
7
Cohort Profile: the Health and Retirement Study (HRS).队列简介:健康与退休研究(HRS)
Int J Epidemiol. 2014 Apr;43(2):576-85. doi: 10.1093/ije/dyu067. Epub 2014 Mar 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验